303 research outputs found
Implementable Wireless Access for B3G Networks - III: Complexity Reducing Transceiver Structures
This article presents a comprehensive overview of some of the research conducted within Mobile VCE’s Core Wireless Access Research Programme,1 a key focus of which has naturally been on MIMO transceivers. The series of articles offers a coherent view of how the work was structured and comprises a compilation of material that has been presented in detail elsewhere (see references within the article). In this article MIMO channel measurements, analysis, and modeling, which were presented previously in the first article in this series of four, are utilized to develop compact and distributed antenna arrays. Parallel activities led to research into low-complexity MIMO single-user spacetime coding techniques, as well as SISO and MIMO multi-user CDMA-based transceivers for B3G systems. As well as feeding into the industry’s in-house research program, significant extensions of this work are now in hand, within Mobile VCE’s own core activity, aiming toward securing major improvements in delivery efficiency in future wireless systems through crosslayer operation
Changing availability of TV white space in the UK
The UK regulator Ofcom has held a Pilot of TV white space (TVWS) technology in the UK. On the basis of the results of this Pilot, Ofcom has varied its calculations of allowed white space device equivalent isotropically radiated powers (EIRP). Further, the World Radiocommunication Conference (WRC) 2015 has assigned 694-790 MHz to mobile broadband on a co-primary basis, in International Telecommunication Union (ITU) Region 1 (which includes the UK/EU). Fundamental observations on the effects of these changes on TVWS availability in the UK are provided.</p
Performance analysis of multi-hop framed ALOHA systems with virtual antenna arrays
We consider a multi-hop virtual multiple-input-multiple-output system, which uses the framed ALOHA technique to select the radio resource at each hop. In this scenario, the source, destination and relaying nodes cooperate with neighboring devices to exploit spatial diversity by means of the concept of virtual antenna array. We investigate both the optimum number of slots per frame in the slotted structure and once the source-destination distance is fixed, the impact of the number of hops on the system performance. A comparison with deterministic, centralized re-use strategies is also presented. Outage probability, average throughput, and energy efficiency are the metrics used to evaluate the performance. Two approximated mathematical expressions are given for the outage probability, which represent lower bounds for the exact metric derived in the paper
Novel precoded relay-assisted algorithm for cellular systems
Cooperative schemes are promising solutions for cellular wireless systems to improve system fairness, extend coverage and increase capacity. The use of relays is of significant interest to allow radio access in situations where a direct path is not available or has poor quality. A data precoded relay-assisted scheme is proposed for a system cooperating with 2 relays, each equipped with either a single antenna or 2-antenna array. However, because of the half-duplex constraint at the relays, relaying-assisted transmission would require the use of a higher order constellation than in the case when a continuous link is available from the BS to the UT. This would imply a penalty in the power efficiency. The simple precoding scheme proposed exploits the relation between QPSK and 16-QAM, by alternately transmitting through the 2 relays, achieving full diversity, while significantly reducing power penalty. Analysis of the pairwise error probability of the proposed algorithm with a single antenna in each relay is derived and confirmed with numerical results. We show the performance improvements of the precoded scheme, relatively to equivalent distributed SFBC scheme employing 16-QAM, for several channel quality scenarios. Copyright © 2010 Sara Teodoro, et al.European project CODIVPortuguese project CADWINPortuguese project AGILEFC
Cognitive and cooperative wireless networks
The traditional approach of dealing with spectrum management in wireless communications has been the definition of a licensed user granted with exclusive exploitation rights for a specific frequency. While it is relatively easy in this case to ensure that excessive interference does not occur, this approach is unlikely to achieve the objective to maximize the value of spectrum, and in fact recent spectrum measurements carried out worldwide have revealed a significant spectrum underutilization, in spite of the fact that spectrum scarcity is claimed when trying to find bands where new systems can be allocated. Just to mention some examples of measurements, different studies can be found in [1-6], revealing that overall occupation in some studies for frequencies up to 7GHz could be in the order of only 18%. © 2012 Springer Milan. All Right Reserved
Novel precoded relay-assisted algorithm for cellular systems
Cooperative schemes are promising solutions for cellular wireless systems to improve system fairness, extend coverage and increase capacity. The use of relays is of significant interest to allow radio access in situations where a direct path is not available or has poor quality. A data precoded relay-assisted scheme is proposed for a system cooperating with 2 relays, each equipped with either a single antenna or 2-antenna array. However, because of the half-duplex constraint at the relays, relaying-assisted transmission would require the use of a higher order constellation than in the case when a continuous link is available from the BS to the UT. This would imply a penalty in the power efficiency. The simple precoding scheme proposed exploits the relation between QPSK and 16-QAM, by alternately transmitting through the 2 relays, achieving full diversity, while significantly reducing power penalty. Analysis of the pairwise error probability of the proposed algorithm with a single antenna in each relay is derived and confirmed with numerical results. We show the performance improvements of the precoded scheme, relatively to equivalent distributed SFBC scheme employing 16-QAM, for several channel quality scenarios. Copyright © 2010 Sara Teodoro, et al.European project CODIVPortuguese project CADWINPortuguese project AGILEFC
Novel precoded relay-assisted algorithm for cellular systems
Cooperative schemes are promising solutions for cellular wireless systems to improve system fairness, extend coverage and increase capacity. The use of relays is of significant interest to allow radio access in situations where a direct path is not available or has poor quality. A data precoded relay-assisted scheme is proposed for a system cooperating with 2 relays, each equipped with either a single antenna or 2-antenna array. However, because of the half-duplex constraint at the relays, relaying-assisted transmission would require the use of a higher order constellation than in the case when a continuous link is available from the BS to the UT. This would imply a penalty in the power efficiency. The simple precoding scheme proposed exploits the relation between QPSK and 16-QAM, by alternately transmitting through the 2 relays, achieving full diversity, while significantly reducing power penalty. Analysis of the pairwise error probability of the proposed algorithm with a single antenna in each relay is derived and confirmed with numerical results. We show the performance improvements of the precoded scheme, relatively to equivalent distributed SFBC scheme employing 16-QAM, for several channel quality scenarios. Copyright © 2010 Sara Teodoro, et al.European project CODIVPortuguese project CADWINPortuguese project AGILEFC
Combined distributed turbo coding and space frequency block coding techniques
The distributed space-time (frequency) coding and distributed channel turbo coding used independently represent two cooperative techniques that can provide increased throughput and spectral efficiency at an imposed maximum Bit Error Rate (BER) and delay required from the new generation of cellular networks. This paper proposes two cooperative algorithms that employ jointly the two types of techniques, analyzes their BER and spectral efficiency performances versus the qualities of the channels involved, and presents some conclusions regarding the adaptive employment of these algorithms. © 2010 V. Bota et al.FP7/ICT/2007/21547
- …