323 research outputs found
Apodization in high-contrast long-slit spectroscopy. Closer, deeper, fainter, cooler
The spectroscopy of faint planetary-mass companions to nearby stars is one of
the main challenges that new-generation high-contrast spectro-imagers are going
to face. In a previous work we presented a long slit coronagraph (LSC), for
which the presence of a slit in the coronagraphic focal plane induces a complex
distribution of energy in the Lyot pupil-plane that cannot be easily masked
with a binary Lyot stop. To alleviate this concern, we propose to use a pupil
apodization to suppress diffraction, creating an apodized long slit coronagraph
(ALSC). After describing how the apodization is optimized, we demonstrate its
advantages with respect to the CLC in the context of SPHERE/IRDIS long slit
spectroscopy (LSS) mode at low-resolution with a 0.12" slit and 0.18"
coronagraphic mask. We perform different sets of simulations with and without
aberrations, and with and without a slit to demonstrate that the apodization is
a more appropriate concept for LSS, at the expense of a significantly reduced
throughput (37%) compared to the LSC. Then we perform detailed end-to-end
simulations of the LSC and the ALSC that include realistic levels of
aberrations to obtain datasets representing 1h of integration time on stars of
spectral types A0 to M0 located at 10 pc. We insert spectra of planetary
companions at different effective temperatures (Teff) and surface gravities
(log g) into the data at angular separations of 0.3" to 1.5" and with contrast
ratios from 6 to 18 mag. Using the SD method to subtract the speckles, we show
that the ALSC brings a gain in sensitivity of up to 3 mag at 0.3" with respect
to the LSC, which leads to a much better spectral extraction below 0.5". In
terms of Teff, we demonstrate that at small angular separations the limit with
the ALSC is always lower by at least 100K, inducing an increase of sensitivity
of a factor up to 1.8 in objects' masses at young ages. [Abridged]Comment: 15 pages, 17 figures. Accepted for publication in A&
Calibration of quasi-static aberrations in exoplanet direct-imaging instruments with a Zernike phase-mask sensor
Context. Several exoplanet direct imaging instruments will soon be in
operation. They use an extreme adaptive optics (XAO) system to correct the
atmospheric turbulence and provide a highly-corrected beam to a near-infrared
(NIR) coronagraph for starlight suppression. The performance of the coronagraph
is however limited by the non-common path aberrations (NCPA) due to the
differential wavefront errors existing between the visible XAO sensing path and
the NIR science path, leading to residual speckles in the coronagraphic image.
Aims. Several approaches have been developed in the past few years to
accurately calibrate the NCPA, correct the quasi-static speckles and allow the
observation of exoplanets at least 1e6 fainter than their host star. We propose
an approach based on the Zernike phase-contrast method for the measurements of
the NCPA between the optical path seen by the visible XAO wavefront sensor and
that seen by the near-IR coronagraph. Methods. This approach uses a focal plane
phase mask of size {\lambda}/D, where {\lambda} and D denote the wavelength and
the telescope aperture diameter, respectively, to measure the quasi-static
aberrations in the upstream pupil plane by encoding them into intensity
variations in the downstream pupil image. We develop a rigorous formalism,
leading to highly accurate measurement of the NCPA, in a quasi-linear way
during the observation. Results. For a static phase map of standard deviation
44 nm rms at {\lambda} = 1.625 {\mu}m (0.026 {\lambda}), we estimate a possible
reduction of the chromatic NCPA by a factor ranging from 3 to 10 in the
presence of AO residuals compared with the expected performance of a typical
current-generation system. This would allow a reduction of the level of
quasi-static speckles in the detected images by a factor 10 to 100 hence,
correspondingly improving the capacity to observe exoplanets.Comment: 11 pages, 14 figures, A&A accepted, 2nd version after language-editor
correction
High-order myopic coronagraphic phase diversity (COFFEE) for wave-front control in high-contrast imaging systems
The estimation and compensation of quasi-static aberrations is mandatory to
reach the ultimate performance of high-contrast imaging systems. COFFEE is a
focal plane wave-front sensing method that consists in the extension of phase
diversity to high-contrast imaging systems. Based on a Bayesian approach, it
estimates the quasi-static aberrations from two focal plane images recorded
from the scientific camera itself. In this paper, we present COFFEE's extension
which allows an estimation of low and high order aberrations with nanometric
precision for any coronagraphic device. The performance is evaluated by
realistic simulations, performed in the SPHERE instrument framework. We develop
a myopic estimation that allows us to take into account an imperfect knowledge
on the used diversity phase. Lastly, we evaluate COFFEE's performance in a
compensation process, to optimize the contrast on the detector, and show it
allows one to reach the 10^-6 contrast required by SPHERE at a few resolution
elements from the star. Notably, we present a non-linear energy minimization
method which can be used to reach very high contrast levels (better than 10^-7
in a SPHERE-like context)Comment: Accepted in Optics Expres
Analysis of ground-based differential imager performance
In the context of extrasolar planet direct detection, we evaluated the
performance of differential imaging with ground-based telescopes. This study
was carried out in the framework of the VLT-Planet Finder project and is
further extended to the case of Extremely Large Telescopes. Our analysis is
providing critical specifications for future instruments mostly in terms of
phase aberrations but also regarding alignments of the instrument optics or
offset pointing on the coronagraph. It is found that Planet Finder projects on
8m class telescopes can be successful at detecting Extrasolar Giant Planets
providing phase aberrations, alignments and pointing are accurately controlled.
The situation is more pessimistic for the detection of terrestrial planets with
Extremely Large Telescopes for which phase aberrations must be lowered at a
very challenging level
Confidence Level and Sensitivity Limits in High Contrast Imaging
In long adaptive optics corrected exposures, exoplanet detections are
currently limited by speckle noise originating from the telescope and
instrument optics, and it is expected that such noise will also limit future
high-contrast imaging instruments for both ground and space-based telescopes.
Previous theoretical analysis have shown that the time intensity variations of
a single speckle follows a modified Rician. It is first demonstrated here that
for a circular pupil this temporal intensity distribution also represents the
speckle spatial intensity distribution at a fix separation from the point
spread function center; this fact is demonstrated using numerical simulations
for coronagraphic and non-coronagraphic data. The real statistical distribution
of the noise needs to be taken into account explicitly when selecting a
detection threshold appropriate for some desired confidence level. In this
paper, a technique is described to obtain the pixel intensity distribution of
an image and its corresponding confidence level as a function of the detection
threshold. Using numerical simulations, it is shown that in the presence of
speckles noise, a detection threshold up to three times higher is required to
obtain a confidence level equivalent to that at 5sigma for Gaussian noise. The
technique is then tested using TRIDENT CFHT and angular differential imaging
NIRI Gemini adaptive optics data. It is found that the angular differential
imaging technique produces quasi-Gaussian residuals, a remarkable result
compared to classical adaptive optic imaging. A power-law is finally derived to
predict the 1-3*10^-7 confidence level detection threshold when averaging a
partially correlated non-Gaussian noise.Comment: 29 pages, 13 figures, accepted to Ap
Laboratory validation of the dual-zone phase mask coronagraph in broadband light at the high-contrast imaging THD-testbed
Specific high contrast imaging instruments are mandatory to characterize
circumstellar disks and exoplanets around nearby stars. Coronagraphs are
commonly used in these facilities to reject the diffracted light of an observed
star and enable the direct imaging and spectroscopy of its circumstellar
environment. One important property of the coronagraph is to be able to work in
broadband light.
Among several proposed coronagraphs, the dual-zone phase mask coronagraph is
a promising solution for starlight rejection in broadband light. In this paper,
we perform the first validation of this concept in laboratory.
First, we recall the principle of the dual-zone phase mask coronagraph. Then,
we describe the high-contrast imaging THD testbed, the manufacturing of the
components and the quality-control procedures. Finally, we study the
sensitivity of our coronagraph to low-order aberrations (inner working angle
and defocus) and estimate its contrast performance. Our experimental broadband
light results are compared with numerical simulations to check agreement with
the performance predictions.
With the manufactured prototype and using a dark hole technique based on the
self-coherent camera, we obtain contrast levels down to between 5
and 17 in monochromatic light (640 nm). We also reach contrast
levels of between 7 and 17 in broadband
( nm, nm and %), which demonstrates the excellent chromatic performance of the dual-zone
phase mask coronagraph.
The performance reached by the dual-zone phase mask coronagraph is promising
for future high-contrast imaging instruments that aim at detecting and
spectrally characterizing old or light gaseous planets.Comment: 9 pages, 16 figure
Exoplanet characterization with long slit spectroscopy
Extrasolar planets observation and characterization by high contrast imaging
instruments is set to be a very important subject in observational astronomy.
Dedicated instruments are being developed to achieve this goal with very high
efficiency. In particular, full spectroscopic characterization of low
temperature planetary companions is an extremely important milestone. We
present a new data analysis method for long slit spectroscopy (LSS) with
coronagraphy, which allows characterization of planetary companions of low
effective temperature. In a speckle-limited regime, this method allows an
accurate estimation and subtraction of the scattered starlight, to extract a
clean spectrum of the planetary companion. We performed intensive LSS
simulations with IDL/CAOS to obtain realistic spectra of low (R=35) and medium
(R=400) resolution in the J, H, and K bands. The simulated spectra were used to
test our method and estimate its performance in terms of contrast reduction and
extracted spectra quality. Our simulations are based on a software package
dedicated to the development of SPHERE, a second generation instrument for the
ESO-VLT. Our method allows a contrast reduction of 0.5 to 2.0 magnitudes
compared to the coronagraphic observations. For M0 and G0 stars located at 10
pc, we show that it would lead to the characterization of companions with Teff
of 600 K and 900 K respectively, at angular separations of 1.0 as. We also show
that errors in the wavelength calibration can produce significant errors in the
characterization, and must therefore be minimized as much as possible.Comment: 10 pages, 12 figures, 3 tables, accepted for publication in A&
- …