6,892 research outputs found

    Influence of convective transport on tropospheric ozone and its precursors in a chemistry-climate model

    Get PDF
    The impact of convection on tropospheric O<sub>3</sub> and its precursors has been examined in a coupled chemistry-climate model. There are two ways that convection affects O<sub>3</sub>. First, convection affects O<sub>3</sub> by vertical mixing of O<sub>3</sub> itself. Convection lifts lower tropospheric air to regions where the O<sub>3</sub> lifetime is longer, whilst mass-balance subsidence mixes O<sub>3</sub>-rich upper tropospheric (UT) air downwards to regions where the O<sub>3</sub> lifetime is shorter. This tends to decrease UT O<sub>3</sub> and the overall tropospheric column of O<sub>3</sub>. Secondly, convection affects O<sub>3</sub> by vertical mixing of O<sub>3</sub> precursors. This affects O<sub>3</sub> chemical production and destruction. Convection transports isoprene and its degradation products to the UT where they interact with lightning NO<sub>x</sub> to produce PAN, at the expense of NO<sub>x</sub>. In our model, we find that convection reduces UT NO<sub>x</sub> through this mechanism; convective down-mixing also flattens our imposed profile of lightning emissions, further reducing UT NO<sub>x</sub>. Over tropical land, which has large lightning NO<sub>x</sub> emissions in the UT, we find convective lofting of NO<sub>x</sub> from surface sources appears relatively unimportant. Despite UT NO<sub>x</sub> decreases, UT O<sub>3</sub> production increases as a result of UT HO<sub>x</sub> increases driven by isoprene oxidation chemistry. However, UT O<sub>3</sub> tends to decrease, as the effect of convective overturning of O<sub>3</sub> itself dominates over changes in O<sub>3</sub> chemistry. Convective transport also reduces UT O<sub>3</sub> in the mid-latitudes resulting in a 13% decrease in the global tropospheric O<sub>3</sub> burden. These results contrast with an earlier study that uses a model of similar chemical complexity. Differences in convection schemes as well as chemistry schemes &ndash; in particular isoprene-driven changes are the most likely causes of such discrepancies. Further modelling studies are needed to constrain this uncertainty range

    Study of radiation hazards to man on extended near earth missions

    Get PDF
    Radiation hazards to man on extended near earth mission

    Arkansas Cotton Variety Test 2004

    Get PDF
    The primary aim of the Arkansas Cotton Variety Test is to provide unbiased data regarding the agronomic performance of cotton varieties and advanced breeding lines in the major cotton-growing areas of Arkansas. This information helps seed dealers establish marketing strategies and assists producers in choosing varieties to plant

    Semiclassical theory of cavity-assisted atom cooling

    Get PDF
    We present a systematic semiclassical model for the simulation of the dynamics of a single two-level atom strongly coupled to a driven high-finesse optical cavity. From the Fokker-Planck equation of the combined atom-field Wigner function we derive stochastic differential equations for the atomic motion and the cavity field. The corresponding noise sources exhibit strong correlations between the atomic momentum fluctuations and the noise in the phase quadrature of the cavity field. The model provides an effective tool to investigate localisation effects as well as cooling and trapping times. In addition, we can continuously study the transition from a few photon quantum field to the classical limit of a large coherent field amplitude.Comment: 10 pages, 8 figure

    Measurable quantum geometric phase from a rotating single spin

    Get PDF
    We demonstrate that the internal magnetic states of a single nitrogen-vacancy defect, within a rotating diamond crystal, acquire geometric phases. The geometric phase shift is manifest as a relative phase between components of a superposition of magnetic substates. We demonstrate that under reasonable experimental conditions a phase shift of up to four radians could be measured. Such a measurement of the accumulation of a geometric phase, due to macroscopic rotation, would be the first for a single atom-scale quantum system.Comment: 5 pages, 2 figures: Accepted for publication in Physical Review Letter
    corecore