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We demonstrate that the internal magnetic states of a single nitrogen-vacancy defect, within a rotating

diamond crystal, acquire geometric phases. The geometric phase shift is manifest as a relative phase

between components of a superposition of magnetic substates. We demonstrate that under reasonable

experimental conditions a phase shift of up to four radians could be measured. Such a measurement of the

accumulation of a geometric phase, due to macroscopic rotation, would be the first for a single atom-scale

quantum system.
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The quantum geometric phase is at the core of our
understanding of the nonintuitive quantum view of the
world, with historical origins going back to the original
paper by Aharonov and Bohm [1], in 1959. However, while
there have been many experimental demonstrations on
ensembles of quantum systems, no measurement of a
quantum phase on an individual quantum system, under-
going macroscopic rotation, has been performed. In this
Letter, we analyze the appearance of the geometric phase
in defects in diamond and show how the measurement of
the geometric phase of a single quantum spin, undergoing
macroscopic rotation, is now in reach.

In 1984, Berry developed an elegant and powerful
mathematical framework which established the
Aharonov-Bohm effect as just one instance of a far more
general class of phenomena [2]. Berry considered the
evolution of a system under a Hamiltonian which is adia-
batically changed over time. He showed that the state of
such a system acquires a phase which is geometrical in
nature. The phase depends only on the system’s path in
parameter space, specifically the flux of some gauge field
enclosed by that path.

Berry’s work has since been applied to a diversity of
phenomena, which can be broadly grouped under the um-
brella of geometric phases or topological phases [3,4].
Specific instances of these geometric phases include the
following: various analogues of the Aharonov-Bohm effect
[5–7]; the rotation of the polarization of light in twisted
optical fibres, which was recognized by Pancharatnam
well before Berry’s paper [8]; the so-called molecular
Aharonov-Bohm effect which introduces a gauge field to
nuclear degrees of freedom in the Born-Oppenheimer ap-
proximation to molecular dynamics [9–12]; and even the
dynamics of classical systems such as low Reynolds num-
ber hydrodynamics [13].

Geometric phases have also proved a fruitful avenue of
investigation for mathematical physicists due to their rich

topological properties and their close connection with
gauge theories of quantum fields. Examples include mathe-
matically formulating geometric phases in terms of the
holonomy of line bundles [14] and directly using the geo-
metric phase to help explain fractional statistics in the
quantum Hall effect [15] and the origin of Wess-Zumino
terms in theories of quantum chromodynamics [16].
Despite this wealth of applications and observations, to
date, only a few experimental observations of geometric
phases due to mechanical rotation have been made [17,18].
These measurements have been on ensembles of 35Cl [17]
and 131Xe [18] nuclear spins. However, no such measure-
ment has been performed on an individual quantum system.
Here, we show how this might now be achieved using

the quantum properties of a diamond, rotating around an
axis, see Fig. 1(a). Such a measurement would represent a
significant contribution to the foundations of quantum
mechanics. The diamond nitrogen-vacancy (NV) system
presents itself as an excellent tool for studying geometric
phases. The electron spin is the canonical quantum system
and the NV center offers a system in which a single spin
can be initialized, coherently controlled, and measured. It
is also possible to mechanically move the diamond crystal,
and the NV with it, about some cyclical macroscopic
trajectory within the spin coherence lifetime. As such,
this is an ideal system to investigate the accumulation of
geometric phase, due to macroscopic rotation, on an indi-
vidual quantum state.
The NV defect has a spin triplet ground state with a

2.88 GHz zero-field splitting between the m ¼ 0 state and
the degenerate m ¼ �1 inert states [Fig. 1(b)]. Optical
excitation with 532 nm light can pump the defect into the
m ¼ 0 state and allows the population of the ground state
to be read, since the m ¼ 0 state produces more fluores-
cence than the m ¼ �1 states [19,20]. The effective
Hamiltonian of the ground state, ignoring crystal asymme-
tries and hyperfine effects, is
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H ¼ 1

@
DS2z0 þ

g�B

@
B � S: (1)

The first term is the zero-field splitting of the NV system
itself, where D is the zero-field splitting strength. It is this
term which makes the crystal’s orientation crucial. It defines
an intrinsic quantization direction z0 (we reserve z for the
lab-frame coordinate), which lies along the axis connecting
the nitrogen atom to its adjacent vacancy [Fig. 1(c)]. The
second term is the usual Zeeman splitting interaction with a
magnetic field. The magnetic field is B, and g � 2 and �B

are the Landé g factor and the Bohr magneton respectively.
To evaluate the geometric phase for the NV center, the

instantaneous eigenstates of the Hamiltonian in terms of
the adiabatically varied parameters � and � [see Fig. 1(c)]
need to be determined. Writing the zero field splitting
Hamiltonian as

H0 ¼ 1
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The geometric phase, given initialization into c ðmÞ
z0 , after

the crystal has been rotated along a trajectory P, defined as
rotation about the z axis with fixed �, is given by

�¼
Z t

0

�dc ðmÞ
z0 ðtÞ
dt

�
?
c ðmÞ

z0 ðtÞdt¼
Z
P
mð1�cos�Þd�: (4)

A similar effect occurs if the quantization axis is deter-
mined by an electric field, which is rotated [21]. For a
closed loop in parameter space,� is simply the solid angle
enclosed by the trajectory of z0, see Fig. 2(a). In the
derivation of Eq. (4) we have assumed that the evolution

of the system is adiabatic: _�2 þ sin2� _�2 � 2D2; i.e., the
adiabatic approximation is valid provided the angular ve-
locity of the crystal is much less that the zero-field splitting
frequency, which is true for the cases we consider below.
While there is a gauge degree of freedom in defining the

instantaneous eigenstates c ðmÞ
z0 , the geometric phase for

a closed loop trajectory is independent of the choice of
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FIG. 1 (color online). (a) Schematic of system: a diamond
crystal containing NV centres, on a spinning table, with the
microwave control polarized along the axis of rotation and the
532 nm optical pulse used for readout. As the NV centre rotates
around the axis the m ¼ �1 states can accumulate a geometric
phase. An example of such phase accumulation is schematically
shown for the m ¼ 1 state with the NV axis in the plane of
rotation, i.e., � ¼ �=2. (b) Energy level diagram of the NV
center. (c) Geometry of the NV center. Defining the magnetic
field direction of the microwave pulses as the z direction, z0 is the
instantaneous direction of the NV axis, defined with respect to
the lab frame, unprimed coordinate system, by � and �.
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FIG. 2 (color online). (a) Proposed Ramsey geometry. The
crystal is attached to a rotating spindle with the NV (z0) axis
of one of its NV centers at an angle � to the spindle (z) axis. Rabi
pulses are produced by a microwave field linearly polarised with
its magnetic field oscillating along the z axis. The magnitude of
the geometric phase after a complete rotation of the spindle is
given by the solid angle subtended by the z0 axis. (b) Proposed
spin echo geometry. The spindle is at an angle �0 to the fixed z
axis of the microwave field, and the NV axis is perpendicular to
the spindle axis. The actual path of the NV (z0) axis encloses a
solid angle of 2�, which is not observable. The � pulse in the
spin echo geometry, however, rectifies the alternating Berry
phase accumulation, producing a total phase of 4�0 after a full
spindle rotation, the solid angle enclosed by the effective trajec-
tory shown.
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gauge. However, we are interested in a geometric phase for
trajectories which are not closed loops and must then be
careful in choosing our gauge.

The geometric phase is observed through interaction
with a microwave magnetic field BR and it is the phase
difference between the NV center and the microwave field,
as seen by the NV center, which is the observable quantity.
Consider a linearly polarized microwave field tuned to the
zero-field splitting transition, oscillating along the fixed z
axis, BR ¼ BR cosð!tÞẑ. The Hamiltonian for the interac-
tion of this field with the NV center is

Hint ¼ g�B

@
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¼ g�BBR cosð!tÞ
cos� ei� sin�ffiffi

2
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0
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2
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0
BB@

1
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where the matrices are expressed with respect to the jmiz0
basis as defined by Eq. (3). The approximation neglects the
term proportional to Sz0 and is valid for weak microwave
fields: g�BBR=@ � !.

Equation (5) depends on both the polar � and azimuthal
� angles. The dependence on the polar angle is simply a
matter of effective strength; i.e., the effective microwave
field strength experienced by the NV center is just BR sin�.
The dependence on the azimuthal angle is more interest-
ing: it has the character of a phase. The effect of a micro-

wave pulse on state c ðmÞ
z0 when the NV axis is at some

azimuthal angle � ¼ �0 is the same as the effect when
� ¼ 0 and the eigenstate is modified by a phase factor
expð�imz0�0Þ. Since the linearly polarized microwave
field can be decomposed into two counterrotating fields,
it should be no surprise that the effective phase of the NV
center should be so closely linked to the microwave field’s
angle relative the the NV axis.

This phase-like dependence of the interaction
Hamiltonian on the NV orientation can be eliminated via

a gauge transformation, of the c ðmÞ
z0 basis, of the form

c ðmÞ
z0 ! eifmð�;�Þc ðmÞ

z0 : (6)

Choosing fm ¼ �m� eliminates the � dependence of the
interaction Hamiltonian [Eq. (5)] as desired. This change
of gauge does not alter measurable quantities. Using this
gauge transformed eigenstate basis the geometric phase
becomes

� ¼
Z
P
m cos�d�: (7)

The final state produced by the microwave pulse now
depends only on the explicit phase given by Eq. (7).
The challenge is now to measure the relative phase

accumulation between two states. Because the bulk
diamond NV electron spin has such long coherence times
it should be possible to observe a geometric phase by
mechanically spinning a diamond crystal. The setup we
propose is very similar to the Aharonov-Casher measure-
ment proposed in Ref. [22]. A diamond crystal is mounted
on a spinning spindle. Optical initialization, coherent mi-
crowave control, and fluorescence detection are used to
measure the phase evolved after a certain rotation angle.
Below we consider two possible scenarios for measuring
the geometric phase: a relatively simple Ramsey geometry
[Fig. 2(a)] and a spin echo pulse sequence [Fig. 2(b)],
enabling a significant increase in the maximum geometric
phase observed at the cost of introducing additional �
microwave pulses. In each case, it is assumed that the
microwave pulse durations and readout times are of order
50 ns and hence the diamond can be considered to be
stationary. Finally, the relative sensitivity of the measure-
ments is investigated.
The Ramsey geometry is shown in Fig. 2(a), with the

microwave field linearly polarized with its magnetic field
pointing along the spindle (z) axis. The crystal itself is
mounted such that the NV axis makes an angle � to the

spindle axis. To remove the degeneracy of the c ð�1Þ
z0 states

we assume a magnetic field rotating with the spindle,
produced, for example, by a permanent magnet mounted
on the spindle.
For the Ramsey geometry as the azimuthal angle � of

the NVaxis passes zero, a �=2 Rabi pulse is applied, tuned

to the c ð0Þ
z0 ! c ð1Þ

z0 transition. As the spindle continues to

rotate, a relative geometric phase evolves between the c ð0Þ
z0

and c ð1Þ
z0 states, given by � ¼ � cos�. Since the magnetic

field, used to split the c ð�1Þ
z0 states, is static the only phase

accumulated between the states is �. After the spindle has
rotated through some angle �0, a second �=2 pulse is
applied, converting the phase into a population difference,
which is measured by 532 nm illumination and a fluores-
cence recording. A spindle rotation frequency of � ¼
4000� rad=s and a 10 �s inhomogeneous broadening
time (T�

2) [23] would allow up to 20 mrad of geometric

phase to be accumulated.
To extend the coherence lifetime of the NVelectron spin

a spin echo pulse sequence could be employed, hence
enabling a larger geometric phase to be measured. To do
this a different geometry is required, shown in Fig. 2(b), in
which the spindle axis is placed at an angle �0 to the
microwave field (z) axis, and the NV (z0) axis is perpen-
dicular to the spindle axis. The resulting geometric phase,
alternates, and for a complete rotation is zero.
A spin echo control sequence, with � pulses applied

whenever the NV (z0) axis is perpendicular to z, would
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rectify the alternating geometric phase, producing a total
phase of � ¼ 4n�, where n is the number of complete
spindle rotations. By extending the coherence time from T�

2

to T2 � 2 ms [24] a spin echo control sequence enables a
geometric phase difference of 4 radians to be produced.

The measurements proposed above would consist of
many repetitions of the pulse sequence to get an average
signal. The sensitivity of the measurement of the geometric
phase is determined by the Poissonian statistics of spin
projection, photon emission, and photon collection. The
uncertainty �� in the measurement of a geometric phase
is related to the uncertainty �S of the normalized fluores-
cence signal S,

�� ¼ �S
dS

d�

� ��1 ¼ 2�S: (8)

The second equality arises because the normalized signal, a
sinusoidal function of �, has a maximum gradient of 1=2.
By appropriately retarding the phase of the final �=2 pulse
it can be ensured that the sinusoid is at its steepest point at
the time of measurement.

The normalized signal S is the number of photons col-
lected over Nr runs, normalized so that hSi ¼ 1=2 when

the populations of c ð0Þ
z0 and c ð1Þ

z0 are equal. If each mea-

surement of c ð0Þ
z0 or c ð1Þ

z0 corresponded to the emission and

detection of exactly one or zero photons respectively, then
the variance of S would be ð�SÞ2 ¼ 1=ð2NrÞ. A more
careful analysis, taking into account the statistics of
(spontaneous) photon emission, imperfect detection and

the nonzero fluorescence of the c ð1Þ
z0 state, modifies the

variance of the normalized signal by a factor C2, giving
ð�SÞ2 ¼ 1=ð2C2NrÞ. The physical basis for the factor C
(C � 0:15 for typical experiments and C ¼ 1 in the ideal
case) is described by Taylor et al. [25].

The relative sensitivity for a series of geometric phase
measurements, using a single NV center, is

��

�
� 2�

ffiffiffiffiffiffiffiffiffi
2TM

p

C�Tð�Þ
2

ffiffiffiffiffiffi
TT

p ; (9)

where TM is the time to take a single measurement, TT is
the total averaging time. Expressing TM in terms of the

relevant decoherence time (TM ¼ aTð�Þ
2 , where a > 1) the

relative sensitivity becomes

��

�

ffiffiffiffiffiffi
TT

p � 2�
ffiffiffiffiffiffi
2a

p

C�
ffiffiffiffiffiffiffiffi
Tð�Þ
2

q : (10)

Based on the proposed experimental parameters given
above (a ¼ 2), this corresponds to a relative uncertainty
in the measurement of � with (without) spin echo pulses

sequences of 0:15 Hz�1=2 (2 Hz�1=2), or a 0.15% (2%)
uncertainty after three hours.

An alternative approach to measuring a geometric phase
using an NV centre is to make use of an ancillary nuclear

spin. Coherent control of nearby nuclear spins such as 13C
or 14N has been demonstrated experimentally [26–28].
Hyperfine coupling between the electron and nuclear spin
allows controlled-NOT (CNOT) operations to be performed,
conditionally flipping one spin depending on the value of
the other spin, which allows information to be exchanged
between electron and nuclear spins. The adiabatically
varying Hamiltonian in a nuclear spin geometric phase
experiment could come from a number of sources. It is
known that the 14N spin of an NV centre has a 5 MHz
zero-field nuclear quadrupole splitting along the NV axis,
in complete analogy with the zero-field splitting of the NV
electronic spin. The zero-field splitting of a 13C spin,
however, will depend on its location. One approach would
be to split the nuclear spin states using a magnet mounted
on the spindle which rotates with the crystal. The splitting
of nuclear spin states will in any case be on the order of
MHz, so adiabaticity (with kHz spindle rotation speed) is
still maintained. Due to their weaker interaction (by three
orders of magnitude) with the environment, nuclear spins
have longer coherence times than electronic spins, T�

2 on
the order of ms [26] for 13C spin. A geometric phase
experiment using nuclear spin would thus be both more
sensitive and would allow a complete rotation of the
spindle within the coherence time at the expense of a
more complicated pulse sequence.
We have demonstrated that a geometric phase shift

manifests between the internal magnetic states of a single
nitrogen-vacancy defect, within a rotating diamond crystal.
The measurement of such a geometric phase shift in a
macroscopically rotating single atom-scale quantum object
would provide a unique test of our fundamental under-
standing of quantum mechanics. As such, we have dem-
onstrated that the measurement of geometric phase shifts
of >1 radian in such systems is possible. The analysis
presented above is not only important in terms of demon-
strating geometric phase shifts in macroscopically rotating
quantum systems it also provides the basis for quantifying
geometric phase shift effects in the use of nanodiamonds as
high precision translational and rotational sensors [29–32].
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