5 research outputs found

    Fabrication and high temperature characteristics of ion-implanted GaAs bipolar transistors and ring-oscillators

    Get PDF
    Ion implantation techniques that permit the reproducible fabrication of bipolar GaAs integrated circuits are studied. A 15 stage ring oscillator and discrete transistor were characterized between 25 and 400 C. The current gain of the transistor was found to increase slightly with temperature. The diode leakage currents increase with an activation energy of approximately 1 eV and dominate the transistor leakage current 1 sub CEO above 200 C. Present devices fail catastrophically at about 400 C because of Au-metallization

    Development of a microelectronic module Final report

    Get PDF
    Feasibility of operating gallium arsenide devices in high temperature microelectronic circuit

    Solid state Ku-band spacecraft transmitters

    Get PDF
    A transmitter is considered that consists of GaAs IMPATT and Read diodes operating in a microstrip circuit environment to provide amplification with a minimum of 63 db small signal gain and a minimum compressed gain at 5 W output of 57 db. Reported are Schottky-Read diode design and fabrication, microstrip and circulator optimization, preamplifier development, power amplifier development, dc-to-dc converter design, and integration of the breadboard transmitter modules. A four-stage power amplifier in cascade with a three-stage preamplifier had an overall gain of 56.5 db at 13.5 GHz with a power output of 4.5 W. A single-stage Read amplifier delivered 5.9 W with 4 db gain at 22% efficiency

    IC Ku-band Impatt Amplifier

    Get PDF
    High efficiency GaAs low-high-low IMPATTs were investigated. Theoretical analyses were employed to establish a design window for the material parameters to maximize microwave performance. Single mesa devices yielded typically 2 to 3 W with 16 to 23% efficiency in waveguide oscillator test circuits. IMPATTs with high reliability Pt/TiW/Pt/Au metallizations were subjected to temperature stress, non-rf bias-temperature stress, and rf bias-temperature stress. Assuming that temperature is the driving force behind the dominant failure mechanism, a mean-time-to-failure considerably greater than 500,000 hours is indicated by the stress tests. A 15 GHz, 4W, 56 dB gain microstrip amplifier was realized using GaAs FETs and IMPATTs. Power combining using a 3 db Lange coupler is employed in the power output stage having an intrinsic power-added efficiency of 15.7%. Overall dc-to-rf efficiency of the amplifier is 10.8%. The amplifier has greater than a 250 MHz, 1 db bandwidth; operates over the 0 deg to 50 C (base plate) temperature range with less than 0.5 db change in the power output; weighs 444 grams; and has a volume of 220 cu cm
    corecore