815 research outputs found

    Caretta

    Get PDF
    Number of Pages: 2Integrative BiologyGeological Science

    Caretta caretta

    Get PDF
    Number of Pages: 7Integrative BiologyGeological Science

    The Status of Loggerhead, Caretta caretta; Kemp's Ridley, Lepidochelys kempi; and Green, Chelonia mydas, Sea Turtles in U.S. Waters: A Reconsideration

    Get PDF
    Assessing the status of widely distributed marine species can prove difficult because virtually every sampling technique has assumptions, limitations, and biases that affect the results of the study. These biases often are overlooked when the biological and nonbiological implications of the results are discussed. In a recent review, Thompson (1988) used mostly unpublished population census data derived from studies conducted by the National Marine Fisheries Service (NMFS) to draw conclusions about the status of Kemp's ridley, Lepidochelys kempi; Atlantic coast green turtles, Chelonia mydas; and the loggerhead sea turtle, Caretta caretta

    Microphysical fundamentals governing cirrus cloud growth: Modeling studies

    Get PDF
    For application to Global Climate Models, large scale numerical models of cirrus cloud formation and maintenance need to be refined to more reliably simulate the effects and feedbacks of high level clouds. A key aspect is how ice crystal growth is initiated in cirrus, which has started a cloud microphysical controversy between camps either believing that heterogeneous or homogeneous drop freezing is predominantly responsible for cold cirrus ice crystal nucleation. In view of convincing evidence for the existence of highly supercooled cloud droplets in the middle and upper troposphere, however, it is concluded that active ice nuclei are rather scarce at cirrus cloud altitudes, and so a new understanding of cirrus cloud formation is needed. This understanding is sought through an examination of cirrus cloud growth models

    Dilemma of the Common Species: Florida Box Turtles

    Get PDF

    Dilemma of the Common Species: Florida Box Turtles

    Get PDF

    Cirrus cloud model parameterizations: Incorporating realistic ice particle generation

    Get PDF
    Recent cirrus cloud modeling studies have involved the application of a time-dependent, two dimensional Eulerian model, with generalized cloud microphysical parameterizations drawn from experimental findings. For computing the ice versus vapor phase changes, the ice mass content is linked to the maintenance of a relative humidity with respect to ice (RHI) of 105 percent; ice growth occurs both with regard to the introduction of new particles and the growth of existing particles. In a simplified cloud model designed to investigate the basic role of various physical processes in the growth and maintenance of cirrus clouds, these parametric relations are justifiable. In comparison, the one dimensional cloud microphysical model recently applied to evaluating the nucleation and growth of ice crystals in cirrus clouds explicitly treated populations of haze and cloud droplets, and ice crystals. Although these two modeling approaches are clearly incompatible, the goal of the present numerical study is to develop a parametric treatment of new ice particle generation, on the basis of detailed microphysical model findings, for incorporation into improved cirrus growth models. For example, the relation between temperature and the relative humidity required to generate ice crystals from ammonium sulfate haze droplets, whose probability of freezing through the homogeneous nucleation mode are a combined function of time and droplet molality, volume, and temperature. As an example of this approach, the results of cloud microphysical simulations are presented showing the rather narrow domain in the temperature/humidity field where new ice crystals can be generated. The microphysical simulations point out the need for detailed CCN studies at cirrus altitudes and haze droplet measurements within cirrus clouds, but also suggest that a relatively simple treatment of ice particle generation, which includes cloud chemistry, can be incorporated into cirrus cloud growth

    Tracking global population trends: population time-series data and a Living Planet Index for reptiles

    Get PDF
    Effective conservation action relies on access to the best-available species data. Reptiles have often been overlooked in conservation prioritization, especially because of a paucity of population data. Using data for 549 reptile populations representing 194 species from the Living Planet database, we provide the first detailed analysis of this database for a specific taxonomic group. We estimated an average global decline in reptile populations of 54-55% between 1970 and 2012. Disaggregated indices at taxonomic, system, and biogeographical levels showed trends of decline, often with wide confidence intervals because of a prevalence of short time series. We assessed gaps in our reptile time-series data and examined what types of publication they primarily originated from to provide an overview of the range of data sources captured in the Living Planet database. Data were biased toward crocodilians and chelonians, with only 1% and 2% of known lizard and snake species represented, respectively. Population time-series data stemmed primarily from published ecological research (squamates) and data collected for conservation management (chelonians and crocodilians). We recommend exploration of novel survey and analytical techniques to increase monitoring of reptiles, especially squamates, over time. Open access publication and sharing of data sets are vital to improve knowledge of reptile status and trends, aided by the provision of properly curated databases and data-sharing agreements. Such collaborative efforts are vital to effectively address global reptile declines
    • …
    corecore