14 research outputs found
ALBAYZIN Query-by-example Spoken Term Detection 2016 evaluation
[EN] Query-by-example Spoken Term Detection (QbE STD) aims to retrieve data from a speech repository given an acoustic (spoken) query containing the term of interest as the input. This paper presents the systems submitted to the ALBAYZIN QbE STD 2016 Evaluation held as a part of the ALBAYZIN 2016 Evaluation Campaign at the IberSPEECH 2016 conference. Special attention was given to the evaluation design so that a thorough post-analysis of the main results could be carried out. Two different Spanish speech databases, which cover different acoustic and language domains, were used in the evaluation: the MAVIR database, which consists of a set of talks from workshops, and the EPIC database, which consists of a set of European Parliament sessions in Spanish. We present the evaluation design, both databases, the evaluation metric, the systems submitted to the evaluation, the results, and a thorough analysis and discussion. Four different research groups participated in the evaluation, and a total of eight template matching-based systems were submitted. We compare the systems submitted to the evaluation and make an in-depth analysis based on some properties of the spoken queries, such as query length, single-word/multi-word queries, and in-language/out-of-language queries.This work was partially supported by Fundacao para a Ciencia e Tecnologia (FCT) under the projects UID/EEA/50008/2013 (pluriannual funding in the scope of the LETSREAD project) and UID/CEC/50021/2013, and Grant SFRH/BD/97187/2013. Jorge Proenca is supported by the SFRH/BD/97204/2013 FCT Grant. This work was also supported by the Galician Government ('Centro singular de investigacion de Galicia' accreditation 2016-2019 ED431G/01 and the research contract GRC2014/024 (Modalidade: Grupos de Referencia Competitiva 2014)), the European Regional Development Fund (ERDF), the projects "DSSL: Redes Profundas y Modelos de Subespacios para Deteccion y Seguimiento de Locutor, Idioma y Enfermedades Degenerativas a partir de la Voz" (TEC2015-68172-C2-1-P) and the TIN2015-64282-R funded by Ministerio de Economia y Competitividad in Spain, the Spanish Government through the project "TraceThem" (TEC2015-65345-P), and AtlantTIC ED431G/04.Tejedor, J.; Toledano, DT.; Lopez-Otero, P.; Docio-Fernandez, L.; Proença, J.; PerdigĂŁo, F.; GarcĂa-Granada, F.... (2018). ALBAYZIN Query-by-example Spoken Term Detection 2016 evaluation. EURASIP Journal on Audio, Speech and Music Processing. 1-25. https://doi.org/10.1186/s13636-018-0125-9S125Jarina, R, Kuba, M, Gubka, R, Chmulik, M, Paralic, M (2013). UNIZA system for the spoken web search task at MediaEval 2013. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 791–792).Ali, A, & Clements, MA (2013). Spoken web search using and ergodic hidden Markov model of speech. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 861–862).Buzo, A, Cucu, H, Burileanu, C (2014). SpeeD@MediaEval 2014: Spoken term detection with robust multilingual phone recognition. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 721–722).Caranica, A, Buzo, A, Cucu, H, Burileanu, C (2015). SpeeD@MediaEval 2015: Multilingual phone recognition approach to Query By Example STD. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 781–783).Kesiraju, S, Mantena, G, Prahallad, K (2014). IIIT-H system for MediaEval 2014 QUESST. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 761–762).Ma, M, & Rosenberg, A (2015). CUNY systems for the Query-by-Example search on speech task at MediaEval 2015. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 831–833).Takahashi, J, Hashimoto, T, Konno, R, Sugawara, S, Ouchi, K, Oshima, S, Akyu, T, Itoh, Y (2014). An IWAPU STD system for OOV query terms and spoken queries. In Proc. of NTCIR-11. National Institute of Informatics, Tokyo, (pp. 384–389).Makino, M, & Kai, A (2014). Combining subword and state-level dissimilarity measures for improved spoken term detection in NTCIR-11 SpokenQuery & Doc task. In Proc. of NTCIR-11. National Institute of Informatics, Tokyo, (pp. 413–418).Konno, R, Ouchi, K, Obara, M, Shimizu, Y, Chiba, T, Hirota, T, Itoh, Y (2016). An STD system using multiple STD results and multiple rescoring method for NTCIR-12 SpokenQuery & Doc task. In Proc. of NTCIR-12. National Institute of Informatics, Tokyo, (pp. 200–204).Sakamoto, N, Yamamoto, K, Nakagawa, S (2015). Combination of syllable based N-gram search and word search for spoken term detection through spoken queries and IV/OOV classification. In Proc. of ASRU. IEEE, New York, (pp. 200–206).Hou, J, Pham, VT, Leung, C-C, Wang, L, 2, HX, Lv, H, Xie, L, Fu, Z, Ni, C, Xiao, X, Chen, H, Zhang, S, Sun, S, Yuan, Y, Li, P, Nwe, TL, Sivadas, S, Ma, B, Chng, ES, Li, H (2015). The NNI Query-by-Example system for MediaEval 2015. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 141–143).Vavrek, J, Viszlay, P, Lojka, M, Pleva, M, Juhar, J, Rusko, M (2015). TUKE at MediaEval 2015 QUESST. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 451–453).Mantena, G, Achanta, S, Prahallad, K (2014). Query-by-example spoken term detection using frequency domain linear prediction and non-segmental dynamic time warping. IEEE/ACM Transactions on Audio, Speech and Language Processing, 22(5), 946–955.Anguera, X, & Ferrarons, M (2013). Memory efficient subsequence DTW for query-by-example spoken term detection. In Proc. of ICME. IEEE, New York, (pp. 1–6).Tulsiani, H, & Rao, P (2015). The IIT-B Query-by-Example system for MediaEval 2015. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 341–343).Bouallegue, M, Senay, G, Morchid, M, Matrouf, D, Linares, G, Dufour, R (2013). LIA@MediaEval 2013 spoken web search task: An I-Vector based approach. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 771–772).Rodriguez-Fuentes, LJ, Varona, A, Penagarikano, M, Bordel, G, Diez, M (2013). GTTS systems for the SWS task at MediaEval 2013. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 831–832).Wang, H, Lee, T, Leung, C-C, Ma, B, Li, H (2013). Using parallel tokenizers with DTW matrix combination for low-resource spoken term detection. In Proc. of ICASSP. IEEE, New York, (pp. 8545–8549).Wang, H, & Lee, T (2013). The CUHK spoken web search system for MediaEval 2013. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 681–682).Proenca, J, Veiga, A, PerdigĂŁo, F (2014). The SPL-IT query by example search on speech system for MediaEval 2014. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 741–742).Proenca, J, Veiga, A, Perdigao, F (2015). Query by example search with segmented dynamic time warping for non-exact spoken queries. In Proc. of EUSIPCO. Springer, Berlin, (pp. 1691–1695).Proenca, J, Castela, L, Perdigao, F (2015). The SPL-IT-UC Query by Example search on speech system for MediaEval 2015. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 471–473).Proenca, J, & Perdigao, F (2016). Segmented dynamic time warping for spoken Query-by-Example search. In Proc. of Interspeech. ISCA, Baixas, (pp. 750–754).Lopez-Otero, P, Docio-Fernandez, L, Garcia-Mateo, C (2015). GTM-UVigo systems for the Query-by-Example search on speech task at MediaEval 2015. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 521–523).Lopez-Otero, P, Docio-Fernandez, L, Garcia-Mateo, C (2015). Phonetic unit selection for cross-lingual Query-by-Example spoken term detection. In Proc. of ASRU. IEEE, New York, (pp. 223–229).Saxena, A, & Yegnanarayana, B (2015). Distinctive feature based representation of speech for Query-by-Example spoken term detection. In Proc. of Interspeech. ISCA, Baixas, (pp. 3680–3684).Skacel, M, & Szöke, I (2015). BUT QUESST 2015 system description. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 721–723).Chen, H, Leung, C-C, Xie, L, Ma, B, Li, H (2016). Unsupervised bottleneck features for low-resource Query-by-Example spoken term detection. In Proc. of Interspeech. ISCA, Baixas, (pp. 923–927).Yuan, Y, Leung, C-C, Xie, L, Chen, H, Ma, B, Li, H (2017). Pairwise learning using multi-lingual bottleneck features for low-resource Query-by-Example spoken term detection. In Proc. of ICASSP. IEEE, New York, (pp. 5645–5649).Torbati, AHHN, & Picone, J (2016). A nonparametric Bayesian approach for spoken term detection by example query. In Proc. of Interspeech. ISCA, Baixas, (pp. 928–932).Popli, A, & Kumar, A (2015). Query-by-example spoken term detection using low dimensional posteriorgrams motivated by articulatory classes. In Proc. of MMSP. IEEE, New York, (pp. 1–6).Yang, P, Leung, C-C, Xie, L, Ma, B, Li, H (2014). Intrinsic spectral analysis based on temporal context features for query-by-example spoken term detection. In Proc. of Interspeech. ISCA, Baixas, (pp. 1722–1726).George, B, Saxena, A, Mantena, G, Prahallad, K, Yegnanarayana, B (2014). Unsupervised query-by-example spoken term detection using bag of acoustic words and non-segmental dynamic time warping. In Proc. of Interspeech. ISCA, Baixas, (pp. 1742–1746).Hazen, TJ, Shen, W, White, CM (2009). Query-by-example spoken term detection using phonetic posteriorgram templates. In Proc. of ASRU. IEEE, New York, (pp. 421–426).Abad, A, Astudillo, RF, Trancoso, I (2013). The L2F spoken web search system for mediaeval 2013. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 851–852).Szöke, I, Skácel, M, Burget, L (2014). BUT QUESST 2014 system description. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 621–622).Szöke, I, Burget, L, GrĂ©zl, F, ÄŚernockĂ˝, JH, Ondel, L (2014). Calibration and fusion of query-by-example systems - BUT SWS 2013. In Proc. of ICASSP. IEEE, New York, (pp. 621–622).Abad, A, RodrĂguez-Fuentes, LJ, Penagarikano, M, Varona, A, Bordel, G (2013). On the calibration and fusion of heterogeneous spoken term detection systems. In Proc. of Interspeech. ISCA, Baixas, (pp. 20–24).Yang, P, Xu, H, Xiao, X, Xie, L, Leung, C-C, Chen, H, Yu, J, Lv, H, Wang, L, Leow, SJ, Ma, B, Chng, ES, Li, H (2014). The NNI query-by-example system for MediaEval 2014. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 691–692).Leung, C-C, Wang, L, Xu, H, Hou, J, Pham, VT, Lv, H, Xie, L, Xiao, X, Ni, C, Ma, B, Chng, ES, Li, H (2016). Toward high-performance language-independent Query-by-Example spoken term detection for MediaEval 2015: Post-evaluation analysis. In Proc. of Interspeech. ISCA, Baixas, (pp. 3703–3707).Xu, H, Hou, J, Xiao, X, Pham, VT, Leung, C-C, Wang, L, Do, VH, Lv, H, Xie, L, Ma, B, Chng, ES, Li, H (2016). Approximate search of audio queries by using DTW with phone time boundary and data augmentation. In Proc. of ICASSP. IEEE, New York, (pp. 6030–6034).Oishi, S, Matsuba, T, Makino, M, Kai, A (2016). Combining state-level and DNN-based acoustic matches for efficient spoken term detection in NTCIR-12 SpokenQuery &Doc-2 task. In Proc. of NTCIR-12. National Institute of Informatics, Tokyo, (pp. 205–210).Oishi, S, Matsuba, T, Makino, M, Kai, A (2016). Combining state-level spotting and posterior-based acoustic match for improved query-by-example spoken term detection. In Proc. of Interspeech. ISCA, Baixas, (pp. 740–744).Obara, M, Kojima, K, Tanaka, K, Lee, S-w, Itoh, Y (2016). Rescoring by combination of posteriorgram score and subword-matching score for use in Query-by-Example. In Proc. of Interspeech. ISCA, Baixas, (pp. 1918–1922).NIST. The Ninth Text REtrieval Conference (TREC 9). http://trec.nist.gov . Accessed Feb 2018.Anguera, X, Rodriguez-Fuentes, LJ, Szöke, I, Buzo, A, Metze, F (2014). Query by Example Search on Speech at Mediaeval 2014. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 351–352).Joho, H, & Kishida, K (2014). Overview of the NTCIR-11 SpokenQuery&Doc Task. In Proc. of NTCIR-11. National Institute of Informatics, Tokyo, (pp. 1–7).NIST. Draft KWS16 Keyword Search Evaluation Plan. https://www.nist.gov/sites/default/files/documents/itl/iad/mig/KWS16-evalplan-v04.pdf . Accessed Feb 2018.Anguera, X, Metze, F, Buzo, A, Szöke, I, Rodriguez-Fuentes, LJ (2013). The spoken web search task. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 921–922).Taras, B, & Nadeu, C (2011). Audio segmentation of broadcast news in the Albayzin-2010 evaluation: overview, results, and discussion. EURASIP Journal on Audio, Speech, and Music Processing, 2011(1), 1–10.Zelenák, M, Schulz, H, Hernando, J (2012). Speaker diarization of broadcast news in Albayzin 2010 evaluation campaign. EURASIP Journal on Audio, Speech, and Music Processing, 2012(19), 1–9.RodrĂguez-Fuentes, LJ, Penagarikano, M, Varona, A, DĂez, M, Bordel, G (2011). The Albayzin 2010 Language Recognition Evaluation. In Proc. of Interspeech. ISCA, Baixas, (pp. 1529–1532).Tejedor, J, Toledano, DT, Lopez-Otero, P, Docio-Fernandez, L, Garcia-Mateo, C, Cardenal, A, Echeverry-Correa, JD, Coucheiro-Limeres, A, Olcoz, J, Miguel, A (2015). Spoken term detection ALBAYZIN 2014 evaluation: overview, systems, results, and discussion. EURASIP, Journal on Audio, Speech and Music Processing, 2015(21), 1–27.Tejedor, J, Toledano, DT, Anguera, X, Varona, A, Hurtado, LF, Miguel, A, Colás, J (2013). Query-by-example spoken term detection ALBAYZIN 2012 evaluation: overview, systems, results, and discussion. EURASIP, Journal on Audio, Speech, and Music Processing, 2013(23), 1–17.Tejedor, J, Toledano, DT, Lopez-Otero, P, Docio-Fernandez, L, Garcia-Mateo, C (2016). Comparison of ALBAYZIN query-by-example spoken term detection 2012 and 2014 evaluations. EURASIP, Journal on Audio, Speech and Music Processing, 2016(1), 1–19.MĂ©ndez, F, DocĂo, L, Arza, M, Campillo, F (2010). The Albayzin 2010 text-to-speech evaluation. In Proc. of FALA. UniversidadeVigo, Vigo, (pp. 317–340).Billa, J, Ma, KW, McDonough, JW, Zavaliagkos, G, Miller, DR, Ross, KN, El-Jaroudi, A (1997). Multilingual speech recognition: the 1996 Byblos Callhome system. In Proc. of Eurospeech. ISCA, Baixas, (pp. 363–366).Killer, M, Stuker, S, Schultz, T (2003). Grapheme based speech recognition. In Proc. of Eurospeech. ISCA, Baixas, (pp. 3141–3144).Burget, L, Schwarz, P, Agarwal, M, Akyazi, P, Feng, K, Ghoshal, A, Glembek, O, Goel, N, Karafiat, M, Povey, D, Rastrow, A, Rose, RC, Thomas, S (2010). Multilingual acoustic modeling for speech recognition based on subspace gaussian mixture models. In Proc. of ICASSP. IEEE, New York, (pp. 4334–4337).Cuayahuitl, H, & Serridge, B (2002). Out-of-vocabulary word modeling and rejection for Spanish keyword spotting systems. In Proc. of MICAI. Springer, Berlin, (pp. 156–165).Tejedor, J (2009). Contributions to keyword spotting and spoken term detection for information retrieval in audio mining. PhD thesis, Universidad AutĂłnoma de Madrid, Madrid, Spain.Tejedor, J, Toledano, DT, Wang, D, King, S, Colás, J (2014). Feature analysis for discriminative confidence estimation in spoken term detection. Computer Speech and Language, 28(5), 1083–1114.Li, J, Wang, X, Xu, B (2014). An empirical study of multilingual and low-resource spoken term detection using deep neural networks. In Proc. of Interspeech. ISCA, Baixas, (pp. 1747–1751).NIST. The Spoken Term Detection (STD) 2006 evaluation plan. http://berlin.csie.ntnu.edu.tw/Courses/Special%20Topics%20in%20Spoken%20Language%20Processing/Lectures2008/SLP2008S-Lecture12-Spoken%20Term%20Detection.pdf . Accessed Feb 2018.Fiscus, JG, Ajot, J, Garofolo, JS, Doddingtion, G (2007). Results of the 2006 spoken term detection evaluation. In Proc. of SSCS. ACM, New York, (pp. 45–50).Martin, A, Doddington, G, Kamm, T, Ordowski, M, Przybocki, M (1997). The DET curve in assessment of detection task performance. In Proc. of Eurospeech. ISCA, Baixas, (pp. 1895–1898).NIST. Evaluation Toolkit (STDEval) software. https://www.nist.gov/itl/iad/mig/tools . Accessed Feb 2018.Union, IT. ITU-T Recommendation P.563: Single-ended method for objective speech quality assessment in narrow-band telephony applications. http://www.itu.int/rec/T-REC-P.563/en . Accessed Feb 2018.Rajput, N, & Metze, F (2011). Spoken web search. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 1–2).Metze, F, Barnard, E, Davel, M, van Heerden, C, Anguera, X, Gravier, G, Rajput, N (2012). The spoken web search task. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 41–42).Szöke, I, Rodriguez-Fuentes, LJ, Buzo, A, Anguera, X, Metze, F, Proenca, J, Lojka, M, Xiong, X (2015). Query by Example Search on Speech at Mediaeval 2015. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 81–82).Szöke, I, & Anguera, X (2016). Zero-cost speech recognition task at Mediaeval 2016. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 81–82).Akiba, T, Nishizaki, H, Nanjo, H, Jones, GJF (2014). Overview of the NTCIR-11 spokenquery &doc task. In Proc. of NTCIR-11. National Institute of Informatics, Tokyo, (pp. 1–15).Akiba, T, Nishizaki, H, Nanjo, H, Jones, GJF (2016). Overview of the NTCIR-12 spokenquery &doc-2. In Proc. of NTCIR-12. National Institute of Informatics, Tokyo, (pp. 1–13).Schwarz, P (2008). Phoneme recognition based on long temporal context. PhD thesis, FIT, BUT, Brno, Czech Republic.Varona, A, Penagarikano, M, RodrĂguez-Fuentes, LJ, Bordel, G (2011). On the use of lattices of time-synchronous cross-decoder phone co-occurrences in a SVM-phonotactic language recognition system. In Proc. of Interspeech. ISCA, Baixas, (pp. 2901–2904).Eyben, F, Wollmer, M, Schuller, B (2010). OpenSMILE—the munich versatile and fast open-source audio feature extractor. In Proc. of ACM Multimedia (MM). ACM, New York, (pp. 1459–1462).Lopez-Otero, P, Docio-Fernandez, L, Garcia-Mateo, C (2016). Finding relevant features for zero-resource query-by-example search on speech. Speech Communication, 84(1), 24–35.Zhang, Y, & Glass, JR (2009). Unsupervised spoken keyword spotting via segmental DTW on Gaussian posteriorgrams. In Proc. of ASRU. IEEE, New York, (pp. 398–403).Povey, D, Ghoshal, A, Boulianne, G, Burget, L, Glembek, O, Goel, N, Hannemann, M, Motlicek, P, Qian, Y, Schwarz, P, Silovsky, J, Stemmer, G, Vesely, K (2011). The KALDI speech recognition toolkit. In Proc. of ASRU. IEEE, New York, (pp. 1–4).Muller, M. (2007). Information retrieval for music and motion. New York: Springer.Szöke, I, Skacel, M, Burget, L (2014). BUT QUESST 2014 system description. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 621–622).BrĂĽmmer, N, & van Leeuwen, D (2006). On calibration of language recognition scores. In Proc of the IEEE Odyssey: The speaker and language recognition workshop. IEEE, New York, (pp. 1–8).BrĂĽmmer, N, & de Villiers, E. The BOSARIS toolkit user guide: Theory, algorithms and code for binary classifier score processing. Technical report. https://sites.google.com/site/nikobrummer . Accessed Feb 2018.Meinedo, H, & Neto, J (2005). A stream-based audio segmentation, classification and clustering pre-processing system for broadcast news using ANN models. In Proc. of Interspeech. ISCA, Baixas, (pp. 237–240).Morgan, N, & Bourlard, H (1995). An introduction to hybrid HMM/connectionist continuous speech recognition. IEEE Signal Processing Magazine, 12(3), 25–42.Meinedo, H, Abad, A, Pellegrini, T, Trancoso, I, Neto, J (2010). The L2F broadcast news speech recognition system. In Proc. of FALA. UniversidadeVigo, Vigo, (pp. 93–96).Abad, A, Luque, J, Trancoso, I (2011). Parallel transformation network features for speaker recognition. In Proc. of ICASSP. IEEE, New York, (pp. 5300–5303).Diez, M, Varona, A, Penagarikano, M, Rodriguez-Fuentes, LJ, Bordel, G (2012). On the use of phone log-likelihood ratios as features in spoken language recognition. In Proc. of SLT. IEEE, New York, (pp. 274–279).Diez, M, Varona, A, Penagarikano, M, Rodriguez-Fuentes, LJ, Bordel, G (2014). New insight into the use of phone log-likelihood ratios as features for language recognition. In Proc. of Interspeech. ISCA, Baixas, (pp. 1841–1845).Abad, A, Ribeiro, E, Kepler, F, Astudillo, R, Trancoso, I (2016). Exploiting phone log-likelihood ratio features for the detection of the native language of non-native English speakers. In Proc. of Interspeech. ISCA, Baixas, (pp. 2413–2417).RodrĂguez-Fuentes, LJ, Varona, A, Peñagarikano, M, Bordel, G, DĂez, M (2014). High-performance query-by-example spoken term detection on the SWS 2013 evaluation. In Proc. of ICASSP. IEEE, New York, (pp. 7819–7823).Vesely, K, Ghoshal, A, Burget, L, Povey, D (2013). Sequence-discriminative training of deep neural networks. In Proc. of Interspeech. ISCA, Baixas, (pp. 2345–2349).Ghahremani, P, BabaAli, B, Povey, D, Riedhammer, K, Trmal, J, Khudanpur, S (2014). A pitch extraction algorithm tuned for automatic speech recognition. In Proc. of ICASSP. IEEE, New York, (pp. 2494–2498).Povey, D, Hannemann, M, Boulianne, G, Burget, L, Ghoshal, A, Janda, M, Karafiat, M, Kombrink, S, Motlicek, P, Qian, Y, Riedhammer, K, Vesely, K, Vu, NT (2012). Generating exact lattices in the WFST framework. In Proc. of ICASSP. IEEE, New York, (pp. 4213–4216).Garcia-Mateo, C, Dieguez-Tirado, J, Docio-Fernandez, L, Cardenal-Lopez, A (2004). Transcrigal: A bilingual system for automatic indexing of broadcast news. In Proc. of LREC. ELRA, Paris, (pp. 2061–2064).Stolcke, A (2002). SRILM—an extensible language modeling toolkit. In Proc. of Interspeech. ISCA, Baixas, (pp. 901–904).Lopez-Otero, P, Docio-Fernandez, L, Garcia-Mateo, C (2016). GTM-UVigo systems for Albayzin 2016 search on speech evaluation. In Proc. of Iberspeech. Springer, Berlin, (pp. 65–74).Chen, G, Khudanpur, S, Povey, D, Trmal, J, Yarowsky, D, Yilmaz, O (2013). Quantifying the value of pronunciation lexicons for keyword search in low resource languages. In Proc. of ICASSP. IEEE, New York, (pp. 8560–8564).Pham, VT, Chen, NF, Sivadas, S, Xu, H, Chen, I-F, Ni, C, Chng, ES, Li, H (2014). System and keyword dependent fusion for spoken term detection. In Proc. of SLT. IEEE, New York, (pp. 430–435).Can, D, & Saraclar, M (2011). Lattice indexing for spoken term detection. IEEE Transactions on Audio, Speech and Language Processing, 19(8), 2338–2347.Miller, DRH, K
Classifying depression symptom severity: Assessment of speech representations in personalized and generalized machine learning models
There is an urgent need for new methods that improve the management and treatment of Major Depressive Disorder (MDD). Speech has long been regarded as a promising digital marker in this regard, with many works highlighting that speech changes associated with MDD can be captured through machine learning models. Typically, findings are based on cross-sectional data, with little work exploring the advantages of personalization in building more robust and reliable models. This work assesses the strengths of different combinations of speech representations and machine learning models, in personalized and generalized settings in a two-class depression severity classification paradigm. Key results on a longitudinal dataset highlight the benefits of personalization. Our strongest performing model set-up utilized self-supervised learning features and convolutional neural network (CNN) and long short-term memory (LSTM) back-end
Spoken term detection ALBAYZIN 2014 evaluation: overview, systems, results, and discussion
The electronic version of this article is the complete one and can be found online at: http://dx.doi.org/10.1186/s13636-015-0063-8Spoken term detection (STD) aims at retrieving data from a speech repository given a textual representation of the search term. Nowadays, it is receiving much interest due to the large volume of multimedia information. STD differs from automatic speech recognition (ASR) in that ASR is interested in all the terms/words that appear in the speech data, whereas STD focuses on a selected list of search terms that must be detected within the speech data. This paper presents the systems submitted to the STD ALBAYZIN 2014 evaluation, held as a part of the ALBAYZIN 2014 evaluation campaign within the context of the IberSPEECH 2014 conference. This is the first STD evaluation that deals with Spanish language. The evaluation consists of retrieving the speech files that contain the search terms, indicating their start and end times within the appropriate speech file, along with a score value that reflects the confidence given to the detection of the search term. The evaluation is conducted on a Spanish spontaneous speech database, which comprises a set of talks from workshops and amounts to about 7 h of speech. We present the database, the evaluation metrics, the systems submitted to the evaluation, the results, and a detailed discussion. Four different research groups took part in the evaluation. Evaluation results show reasonable performance for moderate out-of-vocabulary term rate. This paper compares the systems submitted to the evaluation and makes a deep analysis based on some search term properties (term length, in-vocabulary/out-of-vocabulary terms, single-word/multi-word terms, and in-language/foreign terms).This work has been partly supported by project CMC-V2
(TEC2012-37585-C02-01) from the Spanish Ministry of Economy and
Competitiveness. This research was also funded by the European Regional
Development Fund, the Galician Regional Government (GRC2014/024,
“Consolidation of Research Units: AtlantTIC Project” CN2012/160)
Using Discrete Wavelet Transform to Model Whistle Contours for Dolphin Species Classification
This work proposes the use of features based on the discrete wavelet transform (DWT) for dolphin species classification. These features are compared with other previously used in the literature, and the experiments carried out in a database featuring four different species of cetaceans (three dolphins and a pilot whale) showed that the use of DWT features led to improved classification performance
Detecting the Severity of Major Depressive Disorder from Speech: A Novel HARD-Training Methodology
Major Depressive Disorder (MDD) is a common worldwide mental health issue
with high associated socioeconomic costs. The prediction and automatic
detection of MDD can, therefore, make a huge impact on society. Speech, as a
non-invasive, easy to collect signal, is a promising marker to aid the
diagnosis and assessment of MDD. In this regard, speech samples were collected
as part of the Remote Assessment of Disease and Relapse in Major Depressive
Disorder (RADAR-MDD) research programme. RADAR-MDD was an observational cohort
study in which speech and other digital biomarkers were collected from a cohort
of individuals with a history of MDD in Spain, United Kingdom and the
Netherlands. In this paper, the RADAR-MDD speech corpus was taken as an
experimental framework to test the efficacy of a Sequence-to-Sequence model
with a local attention mechanism in a two-class depression severity
classification paradigm. Additionally, a novel training method, HARD-Training,
is proposed. It is a methodology based on the selection of more ambiguous
samples for the model training, and inspired by the curriculum learning
paradigm. HARD-Training was found to consistently improve - with an average
increment of 8.6% - the performance of our classifiers for both of two speech
elicitation tasks used and each collection site of the RADAR-MDD speech corpus.
With this novel methodology, our Sequence-to-Sequence model was able to
effectively detect MDD severity regardless of language. Finally, recognising
the need for greater awareness of potential algorithmic bias, we conduct an
additional analysis of our results separately for each gender
ALBAYZIN 2016 spoken term detection evaluation: an international open competitive evaluation in Spanish
Abstract Within search-on-speech, Spoken Term Detection (STD) aims to retrieve data from a speech repository given a textual representation of a search term. This paper presents an international open evaluation for search-on-speech based on STD in Spanish and an analysis of the results. The evaluation has been designed carefully so that several analyses of the main results can be carried out. The evaluation consists in retrieving the speech files that contain the search terms, providing their start and end times, and a score value that reflects the confidence given to the detection. Two different Spanish speech databases have been employed in the evaluation: MAVIR database, which comprises a set of talks from workshops, and EPIC database, which comprises a set of European Parliament sessions in Spanish. We present the evaluation itself, both databases, the evaluation metric, the systems submitted to the evaluation, the results, and a detailed discussion. Five different research groups took part in the evaluation, and ten different systems were submitted in total. We compare the systems submitted to the evaluation and make a deep analysis based on some search term properties (term length, within-vocabulary/out-of-vocabulary terms, single-word/multi-word terms, and native (Spanish)/foreign terms)