5,381 research outputs found
Diagrammatic perturbation theory and the pseudogap
We study a model of quasiparticles on a two-dimensional square lattice
coupled to Gaussian distributed dynamical fields. The model describes
quasiparticles coupled to spin or charge fluctuations and is solved by a Monte
Carlo sampling of the molecular field distributions. The non-perturbative
solution is compared to various approximations based on diagrammatic
perturbation theory. When the molecular field correlations are sufficiently
weak, the diagrammatic calculations capture the qualitative aspects of the
quasiparticle spectrum. For a range of model parameters near the magnetic
boundary, we find that the quasiparticle spectrum is qualitatively different
from that of a Fermi liquid in that it shows a double peak structure, and that
the diagrammatic approximations we consider fail to reproduce, even
qualitatively, the results of the Monte Carlo calculations. This suggests that
the pseudogap induced by a coupling to antiferromagnetic fluctuations and the
spin-splitting of the quasiparticle peak induced by a coupling to ferromagnetic
spin-fluctuations lie beyond diagrammatic perturbation theory
Critical velocity ionisation in substellar atmospheres
The observation of radio, X-ray and Hα emission from substellar objects indicates the presence of plasma regions and associated high-energy processes in their surrounding envelopes. This paper numerically simulates and characterises Critical Velocity Ionisation, a potential ionisation process, that can efficiently generate plasma as a result of neutral gas flows interacting with seed magnetized plasmas. By coupling a Gas-MHD interactions code (to simulate the ionisation mechanism) with a substellar global circulation model (to provide the required gas flows) we quantify the spatial extent of the resulting plasma regions, their degree of ionisation and their lifetime for a typical substellar atmosphere. It is found that the typical average ionisation fraction reached at equilibrium (where the ionisation and recombination rates are equal and opposite) ranges from 10-5 to 10-8, at pressures between 10-1 and 10-3 bar, with a trend of increasing ionisation fraction with decreasing atmospheric pressure. The ionisation fractions reached as a result of Critical Velocity Ionisation are sufficient to allow magnetic fields to couple to gas flows in the atmosphere
A technique for automatic real time scoring of several simultaneous sleep electroencephalograms
Automatic real-time scoring of simultaneous sleep electroencephalogram
The morphology of the Milky Way - II. Reconstructing CO maps from disc galaxies with live stellar distributions
The arm structure of the Milky Way remains somewhat of an unknown, with
observational studies hindered by our location within the Galactic disc. In the
work presented here we use smoothed particle hydrodynamics (SPH) and radiative
transfer to create synthetic longitude-velocity observations. Our aim is to
reverse-engineer a top down map of the Galaxy by comparing synthetic
longitude-velocity maps to those observed. We set up a system of N-body
particles to represent the disc and bulge, allowing for dynamic creation of
spiral features. Interstellar gas, and the molecular content, is evolved
alongside the stellar system. A 3D-radiative transfer code is then used to
compare the models to observational data. The resulting models display arm
features that are a good reproduction of many of the observed emission
structures of the Milky Way. These arms however are dynamic and transient,
allowing for a wide range of morphologies not possible with standard density
wave theory. The best fitting models are a much better match than previous work
using fixed potentials. They favour a 4-armed model with a pitch angle of
approximately 20 degrees, though with a pattern speed that decreases with
increasing Galactic radius. Inner bars are lacking however, which appear
required to fully reproduce the central molecular zone.Comment: 16 pages, 15 figures, accepted by MNRA
LOCV calculations for polarized liquid with the spin-dependent correlation
We have used the lowest order constrained variational (LOCV) method to
calculate some ground state properties of polarized liquid at zero
temperature with the spin-dependent correlation function employing the
Lennard-Jones and Aziz pair potentials. We have seen that the total energy of
polarized liquid increases by increasing polarization. For all
polarizations, it is shown that the total energy in the spin-dependent case is
lower than the spin-independent case. We have seen that the difference between
the energies of spin-dependent and spin-independent cases decreases by
increasing polarization. We have shown that the main contribution of the
potential energy comes from the spin-triplet state.Comment: 14 pages, 5 figures. Int. J. Mod. Phys. B (2008) in pres
Vacuum Energy: Myths and Reality
We discuss the main myths related to the vacuum energy and cosmological
constant, such as: ``unbearable lightness of space-time''; the dominating
contribution of zero point energy of quantum fields to the vacuum energy;
non-zero vacuum energy of the false vacuum; dependence of the vacuum energy on
the overall shift of energy; the absolute value of energy only has significance
for gravity; the vacuum energy depends on the vacuum content; cosmological
constant changes after the phase transition; zero-point energy of the vacuum
between the plates in Casimir effect must gravitate, that is why the zero-point
energy in the vacuum outside the plates must also gravitate; etc. All these and
some other conjectures appear to be wrong when one considers the thermodynamics
of the ground state of the quantum many-body system, which mimics macroscopic
thermodynamics of quantum vacuum. In particular, in spite of the ultraviolet
divergence of the zero-point energy, the natural value of the vacuum energy is
comparable with the observed dark energy. That is why the vacuum energy is the
plausible candidate for the dark energy.Comment: 24 pages, 2 figures, submitted to the special issue of Int. J. Mod.
Phys. devoted to dark energy and dark matter, IJMP styl
Simulations of the grand design galaxy M51: a case study for analysing tidally induced spiral structure
We present hydrodynamical models of the grand design spiral M51 (NGC 5194),
and its interaction with its companion NGC 5195. Despite the simplicity of our
models, our simulations capture the present day spiral structure of M51
remarkably well, and even reproduce details such as a kink along one spiral
arm, and spiral arm bifurcations. We investigate the offset between the stellar
and gaseous spiral arms, and find at most times (including the present day)
there is no offset between the stars and gas to within our error bars. We also
compare our simulations with recent observational analysis of M51. We compute
the pattern speed versus radius, and like the observations, find no single
global pattern speed. We also show that the spiral arms cannot be fitted well
by logarithmic spirals. We interpret these findings as evidence that M51 does
not exhibit a quasi-steady density wave, as would be predicted by density wave
theory. The internal structure of M51 derives from the complicated and
dynamical interaction with its companion, resulting in spiral arms showing
considerable structure in the form of short-lived kinks and bifurcations.
Rather than trying to model such galaxies in terms of global spiral modes with
fixed pattern speeds, it is more realistic to start from a picture in which the
spiral arms, while not being simple material arms, are the result of tidally
induced kinematic density `waves' or density patterns, which wind up slowly
over time.Comment: 23 pages, 20 figures, accepted for publication in MNRA
Are turbulent spheres suitable initial conditions for star-forming clouds?
To date, most numerical simulations of molecular clouds, and star formation within them, assume a uniform density sphere or box with an imposed turbulent velocity field. In this work, we select molecular clouds from galactic scale simulations as initial conditions, increase their resolution, and re-simulate them using the smoothed particle hydrodynamics code GADGET2. Our approach provides clouds with morphologies, internal structures and kinematics that constitute more consistent and realistic initial conditions for simulations of star formation. We perform comparisons between molecular clouds derived from a galactic simulation, and spheres of turbulent gas of similar dimensions, mass and velocity dispersion. We focus on properties of the clouds such as their density, velocity structure and star formation rate. We find that the inherited velocity structure of the galactic clouds has a significant impact on the star formation rate and evolution of the cloud. Our results indicate that, although we can follow the time evolution of star formation in any simulated cloud, capturing the entire history is difficult as we ignore any star formation that might have occurred before initialization. Overall, the turbulent spheres do not match the complexity of the galactic clouds
- …
