54 research outputs found

    Cardiometabolic effects of genetic upregulation of the interleukin 1 receptor antagonist: a Mendelian randomisation analysis

    Get PDF
    Background To investigate potential cardiovascular and other effects of long-term pharmacological interleukin 1 (IL-1) inhibition, we studied genetic variants that produce inhibition of IL-1, a master regulator of inflammation. Methods We created a genetic score combining the effects of alleles of two common variants (rs6743376 and rs1542176) that are located upstream of IL1RN, the gene encoding the IL-1 receptor antagonist (IL-1Ra; an endogenous inhibitor of both IL-1 alpha and IL-1 beta); both alleles increase soluble IL-1Ra protein concentration. We compared effects on inflammation biomarkers of this genetic score with those of anakinra, the recombinant form of IL-1Ra, which has previously been studied in randomised trials of rheumatoid arthritis and other inflammatory disorders. In primary analyses, we investigated the score in relation to rheumatoid arthritis and four cardiometabolic diseases (type 2 diabetes, coronary heart disease, ischaemic stroke, and abdominal aortic aneurysm; 453 411 total participants). In exploratory analyses, we studied the relation of the score to many disease traits and to 24 other disorders of proposed relevance to IL-1 signalling (746 171 total participants). Findings For each IL1RN minor allele inherited, serum concentrations of IL-1Ra increased by 0.22 SD (95% CI 0.18-0.25; 12.5%; p=9.3 x 10(-33)), concentrations of interleukin 6 decreased by 0.02 SD (-0.04 to -0.01; -1,7%; p=3.5 x 10(-3)), and concentrations of C-reactive protein decreased by 0.03 SD (-0.04 to -0.02; -3.4%; p=7.7 x 10(-14)). We noted the effects of the genetic score on these inflammation biomarkers to be directionally concordant with those of anakinra. The allele count of the genetic score had roughly log-linear, dose-dependent associations with both IL-1Ra concentration and risk of coronary heart disease. For people who carried four IL-1Ra-raising alleles, the odds ratio for coronary heart disease was 1.15 (1.08-1.22; p=1.8 x 10(-6)) compared with people who carried no IL-1Ra-raising alleles; the per-allele odds ratio for coronary heart disease was 1.03 (1.02-1.04; p=3.9 x 10(-10)). Perallele odds ratios were 0.97 (0.95-0.99; p=9.9 x 10(-4)) for rheumatoid arthritis, 0.99 (0.97-1.01; p=0.47) for type 2 diabetes, 1.00 (0.98-1.02; p=0.92) for ischaemic stroke, and 1.08 (1.04-1.12; p=1.8 x 10(-5)) for abdominal aortic aneurysm. In exploratory analyses, we observed per-allele increases in concentrations of proatherogenic lipids, including LDL-cholesterol, but no clear evidence of association for blood pressure, glycaemic traits, or any of the 24 other disorders studied. Modelling suggested that the observed increase in LDL-cholesterol could account for about a third of the association observed between the genetic score and increased coronary risk. Interpretation Human genetic data suggest that long-term dual IL-1 alpha/beta inhibition could increase cardiovascular risk and, conversely, reduce the risk of development of rheumatoid arthritis. The cardiovascular risk might, in part, be mediated through an increase in proatherogenic lipid concentrations. Copyright (C) The Interleukin 1 Genetics Consortium. Open Access article distributed under the terms of CC-BY-NC-ND

    A diffusion-tensor-based white matter atlas for rhesus macaques.

    No full text
    Atlases of key white matter (WM) structures in humans are widely available, and are very useful for region of interest (ROI)-based analyses of WM properties. There are histology-based atlases of cortical areas in the rhesus macaque, but none currently of specific WM structures. Since ROI-based analysis of WM pathways is also useful in studies using rhesus diffusion tensor imaging (DTI) data, we have here created an atlas based on a publicly available DTI-based template of young rhesus macaques. The atlas was constructed to mimic the structure of an existing human atlas that is widely used, making results translatable between species. Parcellations were carefully hand-drawn on a principle-direction color-coded fractional anisotropy image of the population template. The resulting atlas can be used as a reference to which registration of individual rhesus data can be performed for the purpose of white-matter parcellation. Alternatively, specific ROIs from the atlas may be warped into individual space to be used in ROI-based group analyses. This atlas will be made publicly available so that it may be used as a resource for DTI studies of rhesus macaques

    Dispositional negativity: An integrative psychological and neurobiological perspective.

    No full text
    Dispositional negativity—the propensity to experience and express more frequent, intense, or enduring negative affect—is a fundamental dimension of childhood temperament and adult personality. Elevated levels of dispositional negativity can have profound consequences for health, wealth, and happiness, drawing the attention of clinicians, researchers, and policy makers. Here, we highlight recent advances in our understanding of the psychological and neurobiological processes linking stable individual differences in dispositional negativity to momentary emotional states. Self-report data suggest that three key pathways—increased stressor reactivity, tonic increases in negative affect, and increased stressor exposure—explain most of the heightened negative affect that characterizes individuals with a more negative disposition. Of these three pathways, tonically elevated, indiscriminate negative affect appears to be most central to daily life and most relevant to the development of psychopathology. New behavioral and biological data provide insights into the neural systems underlying these three pathways and motivate the hypothesis that seemingly ‘tonic’ increases in negative affect may actually reflect increased reactivity to stressors that are remote, uncertain, or diffuse. Research focused on humans, monkeys, and rodents suggests that this indiscriminate negative affect reflects trait-like variation in the activity and connectivity of several key brain regions, including the central extended amygdala and parts of the prefrontal cortex. Collectively, these observations provide an integrative psychobiological framework for understanding the dynamic cascade of processes that bind emotional traits to emotional states and, ultimately, to emotional disorders and other kinds of adverse outcomes

    touton n

    No full text
    toutin nShe loved toutons, balls of fried dough. I remember her making toutons for herself, grabbing out handful after handful of dough from a big bread pan. "Dere'll be no bread if ya keeps makin' toutons May," Raymond would say,] but May would go on making them, smearing them with jam and cream.PRINTED ITEM DNE SupG.M. Story MAY 10 1988[Maybe we should be bold, and add WK derivation!] WKUsed I and SupUsed I and SupUsed Suptoutin, toutan, touten, touton, towtent, damper dog, bangbell

    A coronal slice of the WM atlas.

    No full text
    <p>Overlaid on a T1-W template (left) and an FA color map (right). AT-WM = adjacent thalamus, BCC = body of corpus callosum, CgC = superior cingulum bundle, CgH = perihippocampal cingulum tract, CP = cerebral peduncle, CST = corticospinal tract, DPCR = dorsal posterior corona radiata, EC = external capsule, FX = fornix, MCP = middle cerebellar peduncle, SCR = superior corona radiata, SLF = superior longitudinal fasciculus, SS = sagittal striatum, ST = stria terminalus.</p

    Delineation between tracts.

    No full text
    <p>Top: FA maps of select slices of template (anterior on left, posterior on right) with atlas ROIs overlaid. Bottom: Color FA map of matching slices, showing delineation between tracts. Arrows indicate the division between the SCR (a) and the DPCR (b), and the directional (color) changes that guided the decision of where to put this boundary.</p
    • …
    corecore