2,616 research outputs found

    Analysis of genetic diversity in Eucalyptus grandis (Hill ex Maiden) seed sources using inter simple sequence repeats (ISSR) molecular markers

    Get PDF
    Eucalyptus grandis is an economically important tree species that is native to the Australian continent and its northern neighbours, where it is grown primarily for its hard wood timber and pulp for paperindustries. It is widely grown in tropical countries such as South Africa, Kenya, Angola, Ghana, and Zimbabwe. Five ISSR primers generated 41 scorable polymorphic bands which were used to analyse genetic diversity between and within the seed sources and for construction of neighbour-joining phenogram. Mean Genetic Diversity per each primer loci based on Nei (1987) statistics indicated significant genetic variation between seed sources with 26.4%, (Gst = 0.264) of the total variation attributed to differences between seed sources. The variation between populations could be due to ecological, geographical association and gene flow rates and hence they should be conserved to retain the full breadth of genetic variation of the species. Thus, ISSR-PCR technology is a reliable, rapid (high throughput) and cost effective marker system that can be used to study genetic variation and genetic relationships among E. grandis seed sources

    Cathepsin B-associated Activation of Amyloidogenic Pathway in Murine Mucopolysaccharidosis Type I Brain Cortex

    Get PDF
    Mucopolysaccharidosis type I (MPS I) is caused by genetic deficiency of alpha-l-iduronidase and impairment of lysosomal catabolism of heparan sulfate and dermatan sulfate. In the brain, these substrates accumulate in the lysosomes of neurons and glial cells, leading to neuroinflammation and neurodegeneration. Their storage also affects lysosomal homeostasis-inducing activity of several lysosomal proteases including cathepsin B (CATB). In the central nervous system, increased CATB activity has been associated with the deposition of amyloid plaques due to an alternative pro-amyloidogenic processing of the amyloid precursor protein (APP), suggesting a potential role of this enzyme in the neuropathology of MPS I. In this study, we report elevated levels of protein expression and activity of CATB in cortex tissues of 6-month-old MPS I (Idua -/- mice. Besides, increased CATB leakage from lysosomes to the cytoplasm of Idua -/- cortical pyramidal neurons was indicative of damaged lysosomal membranes. The increased CATB activity coincided with an elevated level of the 16-kDa C-terminal APP fragment, which together with unchanged levels of beta-secretase 1 was suggestive for the role of this enzyme in the amyloidogenic APP processing. Neuronal accumulation of Thioflavin-S-positive misfolded protein aggregates and drastically increased levels of neuroinflammatory glial fibrillary acidic protein (GFAP)-positive astrocytes and CD11b-positive activated microglia were observed in Idua -/- cortex by confocal fluorescent microscopy. Together, our results point to the existence of a novel CATB-associated alternative amyloidogenic pathway in MPS I brain induced by lysosomal storage and potentially leading to neurodegeneration

    Electrochemical synthesis of peroxomonophosphate using boron-doped diamond anodes

    Get PDF
    A new method for the synthesis of peroxomonophosphate, based on the use of boron-doped diamond electrodes, is described. The amount of oxidant electrogenerated depends on the characteristics of the supporting media (pH and solute concentration) and on the operating conditions (temperature and current density). Results show that the pH, between values of 1 and 5, does not influence either the electrosynthesis of peroxomonophosphate or the chemical stability of the oxidant generated. Conversely, low temperatures are required during the electrosynthesis process to minimize the thermal decomposition of peroxomonophosphate and to guarantee significant oxidant concentration. In addition, a marked influence of both the current density and the initial substrate is observed. This observation can be explained in terms of the contribution of hydroxyl radicals in the oxidation mechanisms that occur on diamond surfaces. In the assays carried out below the water oxidation potential, the generation of hydroxyl radicals did not take place. In these cases, peroxomonophosphate generation occurs through a direct electron transfer and, therefore, at these low current densities lower concentrations are obtained. On the other hand, at higher potentials both direct and hydroxyl radical-mediated mechanisms contribute to the oxidant generation and the process is more efficient. In the same way, the contribution of hydroxyl radicals may also help to explain the significant influence of the substrate concentration. Thus, the coexistence of both phosphate and hydroxyl radicals is required to ensure the generation of significant amounts of peroxomonophosphoric acid

    From DNA sequence to application: possibilities and complications

    Get PDF
    The development of sophisticated genetic tools during the past 15 years have facilitated a tremendous increase of fundamental and application-oriented knowledge of lactic acid bacteria (LAB) and their bacteriophages. This knowledge relates both to the assignments of open reading frames (ORF’s) and the function of non-coding DNA sequences. Comparison of the complete nucleotide sequences of several LAB bacteriophages has revealed that their chromosomes have a fixed, modular structure, each module having a set of genes involved in a specific phase of the bacteriophage life cycle. LAB bacteriophage genes and DNA sequences have been used for the construction of temperature-inducible gene expression systems, gene-integration systems, and bacteriophage defence systems. The function of several LAB open reading frames and transcriptional units have been identified and characterized in detail. Many of these could find practical applications, such as induced lysis of LAB to enhance cheese ripening and re-routing of carbon fluxes for the production of a specific amino acid enantiomer. More knowledge has also become available concerning the function and structure of non-coding DNA positioned at or in the vicinity of promoters. In several cases the mRNA produced from this DNA contains a transcriptional terminator-antiterminator pair, in which the antiterminator can be stabilized either by uncharged tRNA or by interaction with a regulatory protein, thus preventing formation of the terminator so that mRNA elongation can proceed. Evidence has accumulated showing that also in LAB carbon catabolite repression in LAB is mediated by specific DNA elements in the vicinity of promoters governing the transcription of catabolic operons. Although some biological barriers have yet to be solved, the vast body of scientific information presently available allows the construction of tailor-made genetically modified LAB. Today, it appears that societal constraints rather than biological hurdles impede the use of genetically modified LAB.

    Design, implementation and evaluation of a national campaign to distribute nine million free LLINs to children under five years of age in Tanzania.

    Get PDF
    BACKGROUND\ud \ud After a national voucher scheme in 2004 provided pregnant women and infants with highly subsidized insecticide-treated nets (ITNs), use among children under five years (U5s) in mainland Tanzania increased from 16% in 2004 to 26.2% in 2007. In 2008, the Ministry of Health and Social Welfare planned a catch-up campaign to rapidly and equitably deliver a free long-lasting insecticidal net (LLIN) to every child under five years in Tanzania.\ud \ud METHODS\ud \ud The ITN Cell, a unit within the National Malaria Control Programme (NMCP), coordinated the campaign on behalf of the Ministry of Health and Social Welfare. Government contractors trained and facilitated local government officials to supervise village-level volunteers on a registration of all U5s and the distribution and issuing of LLINs. The registration results formed the basis for the LLIN order and delivery to village level. Caregivers brought their registration coupons to village issuing posts during a three-day period where they received LLINs for their U5s. Household surveys in five districts assessed ITN ownership and use immediately after the campaign.\ud \ud RESULTS\ud \ud Nine donors contributed to the national campaign that purchased and distributed 9.0 million LLINs at an average cost of $7.07 per LLIN, including all campaign-associated activities. The campaign covered all eight zones of mainland Tanzania, the first region being covered separately during an integrated measles immunization/malaria LLIN distribution in August 2008, and was implemented one zone at a time from March 2009 until May 2010. ITN ownership at household level increased from Tanzania's 2008 national average of 45.7% to 63.4%, with significant regional variations. ITN use among U5s increased from 28.8% to 64.1%, a 2.2-fold increase, with increases ranging from 22.1-38.3% percentage points in different regions.\ud \ud CONCLUSION\ud \ud A national-level LLIN distribution strategy that fully engaged local government authorities helped avoid additional burden on the healthcare system. Distribution costs per net were comparable to other public health interventions. Particularly among rural residents, ITN ownership and use increased significantly for the intended beneficiaries. The upcoming universal LLIN distribution and further behaviour change communication will further improve ITN ownership and use in 2010-2011

    Cytokine-mediated degradation of the transcription factor ERG impacts the pulmonary vascular response to systemic inflammatory challenge

    Get PDF
    BACKGROUND: During infectious diseases, proinflammatory cytokines transiently destabilize interactions between adjacent vascular endothelial cells (ECs) to facilitate the passage of immune molecules and cells into tissues. However, in the lung, the resulting vascular hyperpermeability can lead to organ dysfunction. Previous work identified the transcription factor ERG (erythroblast transformation-specific-related gene) as a master regulator of endothelial homeostasis. Here we investigate whether the sensitivity of pulmonary blood vessels to cytokine-induced destabilization is due to organotypic mechanisms affecting the ability of endothelial ERG to protect lung ECs from inflammatory injury. METHODS: Cytokine-dependent ubiquitination and proteasomal degradation of ERG were analyzed in cultured HUVECs (human umbilical vein ECs). Systemic administration of TNFα (tumor necrosis factor alpha) or the bacterial cell wall component lipopolysaccharide was used to cause a widespread inflammatory challenge in mice; ERG protein levels were assessed by immunoprecipitation, immunoblot, and immunofluorescence. Murine Erg deletion was genetically induced in ECs (Ergfl/fl;Cdh5[PAC]-CreERT2), and multiple organs were analyzed by histology, immunostaining, and electron microscopy. RESULTS: In vitro, TNFα promoted the ubiquitination and degradation of ERG in HUVECs, which was blocked by the proteasomal inhibitor MG132. In vivo, systemic administration of TNFα or lipopolysaccharide resulted in a rapid and substantial degradation of ERG within lung ECs but not ECs of the retina, heart, liver, or kidney. Pulmonary ERG was also downregulated in a murine model of influenza infection. Ergfl/fl;Cdh5(PAC)-CreERT2 mice spontaneously recapitulated aspects of inflammatory challenges, including lung-predominant vascular hyperpermeability, immune cell recruitment, and fibrosis. These phenotypes were associated with a lung-specific decrease in the expression of Tek-a gene target of ERG previously implicated in maintaining pulmonary vascular stability during inflammation. CONCLUSIONS: Collectively, our data highlight a unique role for ERG in pulmonary vascular function. We propose that cytokine-induced ERG degradation and subsequent transcriptional changes in lung ECs play critical roles in the destabilization of pulmonary blood vessels during infectious diseases

    Needle stick injuries among dental students: risk factors and recommendations for prevention

    Get PDF
    Aim: To evaluate the risk factors of needle stick injuries (NSIs) sustained by undergraduate dental students and nurse students at the King's College London (KCL) Dental Institute. Materials and methods: A retrospective study evaluated the incident reports relating to NSIs reported over a period of 2 years. Factors including the dental department, study year, and when the injury took place during administration of local anaesthesia (LA) and recapping conventional syringe or clearing work surface or during disposal. Results: This report showed that students are at the highest risk of NSIs at the fourth year of their 5-year BDS course. About one-third of injuries were reported among this group of students followed by year 5 students (25%). Oral surgery clinics were the major source of incident reporting when compared with other specialised dental clinics within the institute. The left hands of the students were the most frequently affected by such injuries and then the right hands of student dental nurses. The attempt of needle recapping of conventional syringes was the least reported mechanism of injuries and constituted only 15% of the total injuries and mainly occurred in third year students. The most frequent injuries among student nurses were during disposal of the needle. Conclusion: Less NSIs occur when using safety syringes. A non-recapping policy with immediate disposal of either the conventional or safety syringe systems after injection would prevent all clearance-related NSIs sustained by nurses. To avoid NSIs, education plays a vital role particularly with effective implementation of the change to safety syringes with appropriate training
    corecore