20 research outputs found

    Streptococcus agalactiae clones infecting humans were selected and fixed through the extensive use of tetracycline

    Get PDF
    Streptococcus agalactiae (Group B Streptococcus, GBS) is a commensal of the digestive and genitourinary tracts of humans that emerged as the leading cause of bacterial neonatal infections in Europe and North America during the 1960s. Due to the lack of epidemiological and genomic data, the reasons for this emergence are unknown. Here we show by comparative genome analysis and phylogenetic reconstruction of 229 isolates that the rise of human GBS infections corresponds to the selection and worldwide dissemination of only a few clones. The parallel expansion of the clones is preceded by the insertion of integrative and conjugative elements conferring tetracycline resistance (TcR). Thus, we propose that the use of tetracycline from 1948 onwards led in humans to the complete replacement of a diverse GBS population by only few TcR clones particularly well adapted to their host, causing the observed emergence of GBS diseases in neonates. \ua9 2014 Macmillan Publishers Limited. All rights reserved

    Molecular Characterization of Streptococcus agalactiae Isolates Harboring Small erm(T)-Carrying Plasmids

    No full text
    International audienceAmong 1,827 group B Streptococcus (GBS) strains collected between 2006 and 2013 by the French National Reference Center for Streptococci, 490 (26.8%) strains were erythromycin resistant. The erm(T) resistance gene was found in six strains belonging to capsular polysaccharides Ia, III, and V and was carried by the same mobilizable plasmid, which could be efficiently transferred by mobilization to GBS and Enterococcus faecalis recipients, thus promoting a broad dissemination of erm(T)

    Capsular Switching in Group B Streptococcus CC17 Hypervirulent Clone: A Future Challenge for Polysaccharide Vaccine Development

    No full text
    International audienceBackground. The capsular polysaccharide (CPS) is an important virulence factor and a vaccine target of the major neonatal pathogen group B Streptococcus (GBS). Population studies revealed no strong correlation between CPS type and multilocus sequence typing (MLST) cluster, with the remarkable exception of the worldwide spread of hypervirulent GBS CC17, which were all until recently CPS type III.Methods. A total of 965 GBS strains from invasive infection isolated in France were CPS typed and the presence of the CC17-specific surface protein encoding gene hvgA gene was investigated. Three hvgA-positive GBS strains screened were surprisingly CPS type IV and thus further characterized by MLST typing, pulsed-field gel electrophoresis (PFGE), and whole genome sequencing.Results. MLST and PFGE demonstrated a capsular switching from CPS type III to IV within the highly homogeneous GBS CC17. Sequence analysis revealed that this capsular switch was due to the exchange of a 35.5-kb DNA fragment containing the entire cps operon.Conclusions. This work shows that GBS CC17 hypervirulent strains have switched one of their main vaccine targets. Thus, continued surveillance of GBS population remains of the utmost importance during clinical trials of conjugate GBS vaccines

    Invasive Group B Streptococcal Infections in Infants, France

    Get PDF
    Clinical features and molecular characterization of 109 group B streptococci causing neonatal invasive infections were determined over an 18-month period in France. Sixty-four percent of the strains were from late-onset infections, and 75% were capsular type III. The hypervirulent clone ST-17 was recovered in 80% of meningitis cases

    Molecular epidemiology of invasive and non-invasive group B Streptococcus circulating in Serbia

    No full text
    International audienceStreptococcus agalactiae (group B Streptococcus, GBS) remains the leading cause of invasive diseases in neonates and an important cause of infections in the elderly. The aim of this study was to access the prevalence of GBS genito-rectal colonisation of pregnant women and to evaluate the genetic characteristics of invasive and non-invasive GBS isolates recovered throughout Serbia. A total of 432 GBS isolates were tested for antimicrobial susceptibility, capsular polysaccharide (CPS) types and the presence of the hvgA gene. One hundred one randomly selected isolates were further characterized by clustered regularly interspaced short palindromic repeats (CRISPRs) analysis and/or multilocus sequence typing (MLST). The prevalence of GBS colonization in pregnant women was 15%. Overall, six capsular types (Ia, Ib, II to V) were identified, the most common being III (32.2%) and V (25.2%). The hiper-virulent clone type III/ST17 was present in 43.1% and 6.3% (p < 0.05) of paediatric and adults isolates, respectively. Comparative sequence analysis of the CRISPR1 spacers content indicated that a few clones comprised the vast majority of the tested GBS isolates. Thus, it was estimated that dominant clones recovered from infants were CPS III/ST17 in late-onset infections (19/23; 82.6%), and Ia/ST23 in early-onset disease (44.4%). Conversely, genotype CPS V/ST1 was the most prevalent in adults (4/9; 25.4%). All isolates were susceptible to penicillin. Macrolide resistance (23.1%) was strongly associated with the ermB gene and constitutive resistance to clindamycin (63.9%). The majority of strains was resistant to tetracycline (86.6%), mostly mediated by the tetM gene (87.7%). GBS isolates of CPS V/ST1 and CPS III/ST23 were significantly associated with macrolide and tetracycline resistance, respectively. In conclusion, hyper-virulent CPS III/ST17 and V/ST1 were recognized as dominant GBS clones in this study

    Group B streptococcus neonatal invasive infections, France 2007-2012.

    No full text
    International audienceStreptococcus agalactiae (group B streptococcus (GBS)) is the leading cause of invasive infections among newborns in industrialized countries, with two described syndromes: early-onset disease (EOD) and late-onset disease (LOD). Since the introduction in many countries of intrapartum antibioprophylaxis (IAP), the incidence of EOD has dramatically decreased, whereas that of LOD remains unchanged. We describe the clinical and bacteriological characteristics of 438 GBS neonatal invasive infections notified to the French National Reference Centre for Streptococci in France from 2007 to 2012. Clinical data were retrieved from hospitalization reports or questionnaires. Capsular type, assignment to the hypervirulent clonal complex (CC)17 and antibiotic susceptibility profiles were determined. One hundred and seventy-four (39.7%) and 264 (60.3%) isolates were responsible for EOD, including death in utero, and LOD, respectively. EOD was associated with bacteraemia (n = 103, 61%) and LOD with meningitis (n = 145, 55%). EOD was mainly due to capsular polysaccharide (CPS) III isolates (n = 99, 57%) and CPS Ia isolates (n = 40, 23%), and CPS III isolates were responsible for 80% (n = 211) of LOD cases. CC17 accounted for 80% (n = 121) of CPS III isolates responsible for meningitis (n = 151; total cases of meningitis, 188). Bad outcome risk factors were low gestational age and low birthweight. LOD represents almost 60% of cases of neonatal GBS disease in France and other countries in which IAP has been implemented. This observation reinforces the need to develop new prevention strategies targeting CC17, which is predominant in GBS neonatal infections

    Molecular Characterization of Nonhemolytic and Nonpigmented Group B Streptococci Responsible for Human Invasive Infections

    No full text
    International audienceGroup B Streptococcus (GBS) is a common commensal bacterium in adults, but is also the leading cause of invasive bacterial infections in neonates in developed countries. The β-hemolysin/cytolysin (β-h/c), which is always associated with the production of an orange-to-red pigment, is a major virulence factor that is also used for GBS diagnosis. A collection of 1,776 independent clinical GBS strains isolated in France between 2006 and 2013 was evaluated on specific medium for β-h/c activity and pigment production. The genomic sequences of nonhemolytic and nonpigmented (NH/NP) strains were analyzed to identify the molecular basis of this phenotype. Gene deletions or complementations were carried out to confirm the genotype-phenotype association. Sixty-three GBS strains (3.5%) were NH/NP, and 47 of these (74.6%) originated from invasive infections, including bacteremia and meningitis, in neonates or adults. The mutations are localized predominantly in the cyl operon, encoding the β-h/c pigment biosynthetic pathway and, in the abx1 gene, encoding a CovSR regulator partner. In conclusion, although usually associated with GBS virulence, β-h/c pigment production is not absolutely required to cause human invasive infections. Caution should therefore be taken in the use of hemolysis and pigmentation as criteria for GBS diagnosis in routine clinical laboratory settings
    corecore