32 research outputs found

    Recreating blood-brain barrier physiology and structure on chip: A novel neurovascular microfluidic bioreactor

    Get PDF
    The blood-brain barrier (BBB) is a critical structure that serves as the gatekeeper between the central nervous system and the rest of the body. It is the responsibility of the BBB to facilitate the entry of required nutrients into the brain and to exclude potentially harmful compounds; however, this complex structure has remained difficult to model faithfully in vitro. Accurate in vitro models are necessary for understanding how the BBB forms and functions, as well as for evaluating drug and toxin penetration across the barrier. Many previous models have failed to support all the cell types involved in the BBB formation and/or lacked the flow-created shear forces needed for mature tight junction formation. To address these issues and to help establish a more faithful in vitro model of the BBB, we have designed and fabricated a microfluidic device that is comprised of both a vascular chamber and a brain chamber separated by a porous membrane. This design allows for cell-to-cell communication between endothelial cells, astrocytes, and pericytes and independent perfusion of both compartments separated by the membrane. This NeuroVascular Unit (NVU) represents approximately one-millionth of the human brain, and hence, has sufficient cell mass to support a breadth of analytical measurements. The NVU has been validated with both fluorescein isothiocyanate (FITC)-dextran diffusion and transendothelial electrical resistance. The NVU has enabled in vitro modeling of the BBB using all human cell types and sampling effluent from both sides of the barrier

    Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications

    Get PDF
    Superparamagnetic iron oxide nanoparticles can providemultiple benefits for biomedical applications in aqueous environments such asmagnetic separation or magnetic resonance imaging. To increase the colloidal stability and allow subsequent reactions, the introduction of hydrophilic functional groups onto the particles’ surface is essential. During this process, the original coating is exchanged by preferably covalently bonded ligands such as trialkoxysilanes. The duration of the silane exchange reaction, which commonly takes more than 24 h, is an important drawback for this approach. In this paper, we present a novel method, which introduces ultrasonication as an energy source to dramatically accelerate this process, resulting in high-quality waterdispersible nanoparticles around 10 nmin size. To prove the generic character, different functional groups were introduced on the surface including polyethylene glycol chains, carboxylic acid, amine, and thiol groups. Their colloidal stability in various aqueous buffer solutions as well as human plasma and serum was investigated to allow implementation in biomedical and sensing applications.status: publishe

    Effect of Cross-Linking Cations on In Vitro Biocompatibility of Apple Pectin Gel Beads

    No full text
    The study aimed to compare the in vitro biocompatibility of pectin gels formed by different cross-linking cations. Hydrogel beads named CaPG, ZnPG, FePG, and AlPG were prepared from 4% solutions of apple pectin using ionotropic gelling with CaCl2, ZnCl2, FeCl3, and AlCl3, respectively. Cations influenced the gel strength of the wet gel beads in the following order (least strong) Ca2+ < Zn2+ < Fe3+~Al3+ (most strong). The swelling degree of the CaPG beads after 24 h of incubation in the RPMI-1640 medium was 104%, whereas the ZnPG, FePG, and AlPG beads swelled by 76, 108, and 134%, respectively. The strength of the pectin gel decreased significantly after incubation in the RPMI-1640 medium for 24 h, regardless of the cross-linking cation, although the FePG beads remained the strongest. All the pectin beads adsorbed serum proteins to a low degree, however the serum protein adsorption by the ZnPG and FePG beads (1.46 ± 0.87 and 1.35 ± 0.19 µg/mm2) was more than the CaPG and AlPG beads (0.31 ± 0.36 and 0.44 ± 0.25 µg/mm2). All the pectin beads reduced the production of TNF-α and IL-10 by hPBMCs in response to LPS stimulation. The IL-1β response of cells to LPS was significantly reduced by the CaPG, ZnPG, and FePG beads, whereas the AlPG beads enhanced it twofold. The CaPG, FePG, and AlPG beads had no cytotoxicity. The viability of hPBMCs and human fibroblasts incubated with ZnPG beads was 5.3 and 7.2%, respectively. Thus, the use of different cross-linking cations changed the properties of the pectin gel, which is important for biocompatibility

    A conserved zinc binding domain in the largest subunit of DNA-dependent RNA polymerase modulates intrinsic transcription termination and antitermination but does not stabilize the Elongation Complex

    No full text
    An evolutionarily conserved zinc-binding motif is found close to the amino terminus of the largest subunits of DNA-dependent RNA polymerases from bacteria, archaea, and eukaryotes. In bacterial RNA polymerase, this motif, the zinc binding domain, has been implicated in protein–DNA interactions that stabilize the transcription elongation complex and that occur downstream of the catalytic center. Here, we show that this view is incorrect, and instead, the zinc binding domain interacts with product RNA located upstream of the catalytic center and the RNA-DNA hybrid, a view consistent with structural studies of the elongation complex. We engineered mutations that alter or remove the zinc binding domain of Escherichia coli RNA polymerase. Several mutants, including one that lacked all four zinc ligands and another that lacked the entire domain, produced enzymes that were active in vitro and formed stable elongation complexes. However, they were defective in two functions that require interaction of polymerase with product RNA. First, they terminated less efficiently than the wild-type at intrinsic transcription terminators. Second, enzymes lacking the tip of the zinc binding domain or the zinc ligands did not antiterminate in response to an intrinsic antiterminator encoded by the put site of phage HK022. Termination, but not antitermination, was restored by the bacterial termination factor NusA. Surprisingly, a mutant that lacks the entire zinc binding domain regained a partial response to put. To account for this we suggest that put RNA interacts with an additional site in the elongation complex to mediate antitermination, and that this site is occluded by the wild-type zinc binding domain

    Effect of Ionising Irradiation on Wheat Flour

    No full text
    Radiation processing suppresses the development of microorganisms and pests in food products. This method is safe and does not affect nutritional value; however, it may change the properties of starch and proteins. The research objective was to define the effect of ionization on the baking properties and safety indicators of wheat flour. The study featured wheat flour subjected to gamma irradiation at 0–47.52 kGy, as well as dough and bread made from this flour. The flour samples were tested for the radioactivity of radionuclides; a set of experiments revealed their microbiological indicators and falling-number values. The dough samples were studied on an Alveograph and a Mixolab analyzer to define their structural and mechanical properties. The quality of bread was evaluated by its specific volume, shape stability, and sensory profile. The flour proved safe in terms of residual gamma radiation after 24 and 72 h. At the maximal dose of gamma radiation, the total viable count of mesophyll aerobic and optional-anaerobic microorganisms decreased by fifteen times, whereas the amount of mold decreased by five times. The total strain energy, elastic properties, and elasticity index of the dough declined by more than 50%. The dough had a lower stability during kneading. Its gelatinization onset started earlier by 2.3–3.3°C. The falling number decreased by more than four times, probably, due to the changes in the state of wheat starch. The bread samples had a smaller specific volume and a lower dimensional stability. They also demonstrated signs of darkening, stickiness, and crumb crushing at the maximal irradiation dose (47.52 kGy). The microbiological safety indicators of wheat flour increased at the maximal irradiation dose. However, the baking properties of flour decreased. The sensory and physicochemical parameters of bread quality started to deteriorate at ≥ 23 kGy. Therefore, ionization cannot be recommended as a disinfection method for baking wheat flour production

    Correlation between Myocardial Function and Electric Current Pulsatility of the Sputnik Left Ventricular Assist Device: In-Vitro Study

    No full text
    This study assesses the electric current parameters and reports on the analysis of the associated degree of myocardial function during left ventricular assist device (LVAD) support. An assumption is made that there is a correlation between cardiac output and the pulsatility index of the pump electric current. The experimental study is carried out using the ViVitro Pulse Duplicator System with Sputnik LVAD connected. Cardiac output and cardiac power output are used as a measure of myocardial function. Different heart rates (59, 73, 86 bpm) and pump speeds (7600–8400 rpm in 200 rpm steps) are investigated. In our methodology, ventricular stroke volumes in the range of 30–80 mL for each heart rate at a certain pump speed were used to simulate different levels of contractility. The correlation of the two measures of myocardial function and proposed pulsatility index was confirmed using different correlation coefficients (values ≥ 0.91). Linear and quadratic models for cardiac output and cardiac power output versus pulsatility index were obtained using regression analysis of measured data. Coefficients of determination for CO and CPO models were in the ranges of 0.914–0.982 and 0.817–0.993, respectively. Study findings suggest that appropriate interpretation of parameters could potentially serve as a valuable clinical tool to assess myocardial therapy using LVAD infrastructure
    corecore