33 research outputs found

    Up-regulation of the Ku heterodimer in Drosophila testicular cyst cells

    Get PDF
    AbstractIn Drosophila, developing germline cysts in testis are enveloped by two somatic cyst cells essential for germline development and male reproduction. The cyst cells continue development along with the germline. However, the mechanisms of somatic gene expression in testes are poorly understood. We report transcriptional up-regulation of the Ku heterodimer in cyst cells. The initial up-regulation is independent of germline, and transcription is further augmented during spermatogenesis. Abundance of Ku in the cyst cell cytoplasm suggests the role for Ku subunits in the regulation of sperm individualization

    Regulated chromatin domain comprising cluster of co-expressed genes in Drosophila melanogaster

    Get PDF
    Recently, the phenomenon of clustering of co-expressed genes on chromosomes was discovered in eukaryotes. To explore the hypothesis that genes within clusters occupy shared chromatin domains, we performed a detailed analysis of transcription pattern and chromatin structure of a cluster of co-expressed genes. We found that five non-homologous genes (Crtp, Yu, CK2βtes, Pros28.1B and CG13581) are expressed exclusively in Drosophila melanogaster male germ-line and form a non-interrupted cluster in the 15 kb region of chromosome 2. The cluster is surrounded by genes with broader transcription patterns. Analysis of DNase I sensitivity revealed ‘open’ chromatin conformation in the cluster and adjacent regions in the male germ-line cells, where all studied genes are transcribed. In contrast, in somatic tissues where the cluster genes are silent, the domain of repressed chromatin encompassed four out of five cluster genes and an adjacent non-cluster gene CG13589 that is also silent in analyzed somatic tissues. The fifth cluster gene (CG13581) appears to be excluded from the chromatin domain occupied by the other four genes. Our results suggest that extensive clustering of co-expressed genes in eukaryotic genomes does in general reflect the domain organization of chromatin, although domain borders may not exactly correspond to the margins of gene clusters

    Expansion and Evolution of the X-Linked Testis Specific Multigene Families in the melanogaster Species Subgroup

    Get PDF
    The testis specific X-linked genes whose evolution is traced here in the melanogaster species subgroup are thought to undergo fast rate of diversification. The CK2ßtes and NACβtes gene families encode the diverged regulatory β-subunits of protein kinase CK2 and the homologs of β-subunit of nascent peptide associated complex, respectively. We annotated the CK2βtes-like genes related to CK2ßtes family in the D. simulans and D. sechellia genomes. The ancestor CK2βtes-like genes preserved in D. simulans and D. sechellia are considered to be intermediates in the emergence of the D. melanogaster specific Stellate genes related to the CK2ßtes family. The CK2ßtes-like genes are more similar to the unique autosomal CK2ßtes gene than to Stellates, taking into account their peculiarities of polymorphism. The formation of a variant the CK2ßtes gene Stellate in D. melanogaster as a result of illegitimate recombination between a NACßtes promoter and a distinct polymorphic variant of CK2ßtes-like ancestor copy was traced. We found a close nonrandom proximity between the dispersed defective copies of DINE-1 transposons, the members of Helitron family, and the CK2βtes and NACβtes genes, suggesting an involvement of DINE-1 elements in duplication and amplification of these genes

    Use of functional feeding strategies to protect Atlantic salmon from virally-induced inflammatory diseases- mechanistic insights revealed by transcriptomic analysis

    Get PDF
    Over the past few years one of the major concerns in the Atlantic salmon (Salmo salar) farming industry has been the increasing incidence and severity of inflammatory viral diseases. Heart and skeletal muscle inflammation (HSMI) and cardiomyopathy syndrome (CMS) are currently two of the most prevalent viral diseases in commercial Atlantic salmon farms in Norway. Mortality levels in both diseases are generally low but morbidity can be very high with the associated chronic inflammatory response lasting for several months. The consequent reduced growth performance is causing considerable financial impact as HSMI has become increasingly widespread in recent years. The impact of CMS is further exacerbated as it generally affects large fish close to harvest. HSMI lesions occur in the atrium and ventricle in the heart including inflammation and necrosis in epi- endo- and myocardium along with myositis of red skeletal muscle. CMS lesions are commonly observed in the spongy myocardium in the atrium and ventricle of the heart with severe mononuclear inflammation and necrosis. Furthermore, circulatory disturbances associated with reduced cardiac function cause multifocal liver steatosis and necrosis in both diseases. Currently there are no vaccines or any other effective treatments for these diseases and so alternative therapies that could potentially modulate the intensity of the inflammatory response could be crucial to improve the clinical manifestation of the diseases. Therefore, the overall aim of the present study was to evaluate the concept of “clinical nutrition” to improve the clinical symptoms of both viral diseases, HSMI and CMS, through the use of functional feeds formulated with reduced lipid content and increased proportions of anti-inflammatory fatty acids to moderate the apparently uncontrolled inflammatory response in the heart tissue associated with both diseases and also alleviate the secondary hepatic lesions. The experimental work consisted of three major dietary trials in Atlantic salmon in seawater. Two large trials investigated the effects of functional feeds in Atlantic salmon challenged with Atlantic salmon piscine reovirus (ASRV) and piscine myocarditis virus (PMCV), the causal agents of HSMI and CMS, respectively. In both trials, heart transcriptome, heart and liver histopathology and tissue lipid and fatty acid compositions and metabolism were determined post-infection in fish fed with the functional feeds in comparison with fish fed with a standard commercial feed formulation considered as a reference diet. All the functional feeds were formulated to have reduced digestible energy through lower dietary lipid and higher protein contents, and increased levels and proportions of anti-inflammatory long-chain polyunsaturated fatty acids (LC-PUFA), particularly eicosapentaenoic acid (EPA) compared with the reference diets. Histopathology, fatty acid composition and gene expression of heart were assessed over a long time-period of 16 weeks and 14 weeks post-challenge with ASRV and PMCV, respectively. Viral load in heart tissue, hepatic histopathology and fatty acid composition of liver and head kidney along with expression of the genes involved in the eicosanoid and LC-PUFA and eicosanoid biosynthesis pathways were also determined in the HSMI trial. The third trial was a nutritional trial evaluating the effects of dietary digestible energy content on lipid and fatty acid metabolism in salmon fed diets containing graded amounts of lipid. Fatty acid composition of liver and heart were assessed over 12 weeks, along with the hepatic expression of genes of lipid and fatty acid metabolism. The results of this research are presented in four chapters (Chapters 2-5) as four paper manuscripts. The manuscripts/Papers are either published (Chapter 2), in review (Chapter 3 and 4) or drafted for submission (Chapter 5) in appropriate peer-reviewed international journals. Chapter 2 and 3 correspond to the HSMI trial, Chapter 4 to the nutritional trial, and Chapter 5 to the CMS trial. Chapter 2 showed that viral load and histopathology scores were lower in fish fed the functional feeds, especially diet FF1, which displayed better performance. Diet strongly influenced the expression of genes related with the immune and inflammatory responses, with delayed expression in fish fed the functional feeds. Up-regulation of pro-inflammatory genes was correlated with the higher viral load observed at early-mid stages of the disease in fish fed the reference diet (ST). Expression of genes related with the immune response at 16-weeks post challenge reflected the differences in immunomodulation between the functional feeds, with fish fed diet FF1 showing lower expression. Therefore, severity of the heart lesions was correlated with the intensity of the immune response and could be associated with tissue anti-inflammatory LC-PUFA levels. Chapter 3 was focused on liver histopathology, fatty acid composition and LC-PUFA biosynthesis, along with phospholipid fatty acid composition and eicosanoid production in head kidney and heart tissue at early and late stages of ASRV infection. Liver was severely affected by the virus at the beginning of the infection in fish fed the reference ST diet, but the level of lesions were similar in all dietary groups at the end of the trial. Hepatic expression of fatty acyl desaturases was significantly depressed in fish fed the ST diet compare with fish fed the functional feeds despite the lower levels of dietary LC-PUFA in that feed. Thus endogenous production and bioavailability of anti-inflammatory LC-PUFA was potentially enhanced in fish fed the functional feeds. Changes in tissue lipid content, mobilization of fatty acids involved in inflammatory responses and changes in expression of transcription factors and genes involved in eicosanoid biosynthesis were more prominent in head kidney, confirming the important role of this organ in dietary immunomodulation after viral infection. To a lesser extent similar changes were observed in heart tissue, suggesting in situ production of eicosanoids could also be important. The unexpected effects of diet on expression of genes of LC-PUFA biosynthesis were specifically investigated in the trial described in Chapter 4. One aim of this study was to clarify whether dietary lipid content or viral infection was the cause of altered expression of desaturase genes between the different diets. Hepatic expression of other genes of lipid and fatty acid metabolism were also determined to evaluate metabolic changes associated with dietary lipid/energy level. In general, reduction of dietary energy and lipid contents while maintaining similar proportions of dietary fatty acids, led to a general up-regulation of genes involved in lipid biosynthetic pathways. Thus salmon fed lower energy diet showed increased liver expression of fatty acyl desaturases in comparison with fish fed higher energy levels. Heart transcriptomic data in Chapter 5 showed a similar delay in the inflammatory response in fish fed the functional feeds after PCMV infection as observed in the HSMI study. Modulation of inflammatory responses, similar to that previously described after ASRV infection, was also observed in fish fed the functional feeds. However, the differences in the expression of immune related genes and the level of heart lesions were not as prominent at mid-late stages of the disease as in fish fed FF1 in the HSMI trial. The present study demonstrated the beneficial effects of a clinical nutrition approach via functional feeds in two viral inflammatory diseases, HSMI and CMS, currently affecting farmed Atlantic salmon. Dietary immunomodulation increased the availability of anti-inflammatory LC-PUFA and significantly influenced the expression of the genes related with the immune/inflammatory response reducing the level and severity of cardiac and liver lesions and therefore improving the performance of fish suffering the diseases

    Gametogenesis in the Pacific Oyster Crassostrea gigas: A Microarrays-Based Analysis Identifies Sex and Stage Specific Genes

    Get PDF
    Background: The Pacific oyster Crassostrea gigas (Mollusca, Lophotrochozoa) is an alternative and irregular protandrous hermaphrodite: most individuals mature first as males and then change sex several times. Little is known about genetic and phenotypic basis of sex differentiation in oysters, and little more about the molecular pathways regulating reproduction. We have recently developed and validated a microarray containing 31,918 oligomers (Dheilly et al., 2011) representing the oyster transcriptome. The application of this microarray to the study of mollusk gametogenesis should provide a better understanding of the key factors involved in sex differentiation and the regulation of oyster reproduction. Methodology/Principal Findings: Gene expression was studied in gonads of oysters cultured over a yearly reproductive cycle. Principal component analysis and hierarchical clustering showed a significant divergence in gene expression patterns of males and females coinciding with the start of gonial mitosis. ANOVA analysis of the data revealed 2,482 genes differentially expressed during the course of males and/or females gametogenesis. The expression of 434 genes could be localized in either germ cells or somatic cells of the gonad by comparing the transcriptome of female gonads to the transcriptome of stripped oocytes and somatic tissues. Analysis of the annotated genes revealed conserved molecular mechanisms between mollusks and mammals: genes involved in chromatin condensation, DNA replication and repair, mitosis and meiosis regulation, transcription, translation and apoptosis were expressed in both male and female gonads. Most interestingly, early expressed male-specific genes included bindin and a dpy-30 homolog and female-specific genes included foxL2, nanos homolog 3, a pancreatic lipase related protein, cd63 and vitellogenin. Further functional analyses are now required in order to investigate their role in sex differentiation in oysters. Conclusions/Significance: This study allowed us to identify potential markers of early sex differentiation in the oyster C. gigas, an alternative hermaphrodite mollusk. We also provided new highly valuable information on genes specifically expressed by mature spermatozoids and mature oocytes

    The Pattern of Chromosome Folding in Interphase Is Outlined by the Linear Gene Density Profile

    No full text
    Spatial organization of chromatin in the interphase nucleus plays a role in gene expression and inheritance. Although it appears not to be random, the principles of this organization are largely unknown. In this work, we show an explicit relationship between the intranuclear localization of various chromosome segments and the pattern of gene distribution along the genome sequence. Using a 7-megabase-long region of the Drosophila melanogaster chromosome 2 as a model, we observed that the six gene-poor chromosome segments identified in the region interact with components of the nuclear matrix to form a compact stable cluster. The six gene-rich segments form a spatially segregated unstable cluster dependent on nonmatrix nuclear proteins. The resulting composite structure formed by clusters of gene-rich and gene-poor regions is reproducible between the nuclei. We suggest that certain aspects of chromosome folding in interphase are predetermined and can be inferred through in silico analysis of chromosome sequence, using gene density profile as a manifestation of “folding code.
    corecore