107 research outputs found

    Structures of the (Imidazole)nH+ ... Ar (n=1,2,3) complexes determined from IR spectroscopy and quantum chemical calculations

    Get PDF
    Here, we present new cryogenic infrared spectra of the (Imidazole)nH+_{n}H^+ (n=1,2,3) ions. The data was obtained using helium tagging infrared predissociation spectroscopy. The new results were compared with the data obtained by Gerardi et al. (Chem. Phys. Lett. 501:172–178, 2011) using the same technique but with argon as a tag. Comparison of the two experiments, assisted by theoretical calculations, allowed us to evaluate the preferable attachment positions of argon to the (Imidazole)nH+_{n}H^+ frame. Argon attaches to nitrogen-bonded hydrogen in the case of the (Imidazole)H+H^+ ion, while in (Imidazole)2H+_{2}H^+ and (Imidazole)3H+_{3}H^+ the preferred docking sites for the argon are in the center of the complex. This conclusion is supported by analyzing the spectral features attributed to the N–H stretching vibrations. Symmetry adapted perturbation theory (SAPT) analysis of the non-covalent forces between argon and the (Imidazole)nH+_{n}H^+ (n=1,2,3) frame revealed that this switch of docking preference with increasing complex size is caused by an interplay between induction and dispersion interactions

    Structures of the (Imidazole)n_nH+ ... Ar (n=1,2,3) complexes determined from IR spectroscopy and quantum chemical calculations

    No full text
    Here, we present new cryogenic infrared spectra of the (Imidazole)nH+_nH^+ (n=1,2,3) ions. The data was obtained using helium tagging infrared predissociation spectroscopy. The new results were compared with the data obtained by Gerardi et al. (Chem. Phys. Lett. 501:172–178, 2011) using the same technique but with argon as a tag. Comparison of the two experiments, assisted by theoretical calculations, allowed us to evaluate the preferable attachment positions of argon to the (Imidazole)nH+_nH^+ frame. Argon attaches to nitrogen-bonded hydrogen in the case of the (Imidazole)H+ ion, while in (Imidazole)2H+_2H^+ and (Imidazole)3H+_3H^+ the preferred docking sites for the argon are in the center of the complex. This conclusion is supported by analyzing the spectral features attributed to the N–H stretching vibrations. Symmetry adapted perturbation theory (SAPT) analysis of the non-covalent forces between argon and the (Imidazole)nH+_nH^+ (n=1,2,3) frame revealed that this switch of docking preference with increasing complex size is caused by an interplay between induction and dispersion interactions

    Gut Digestive Function and Microbiome after Correction of Experimental Dysbiosis in Rats by Indigenous Bifidobacteria

    No full text
    In recent years, great interest has arisen in the use of autoprobiotics (indigenous bacteria isolated from the organism and introduced into the same organism after growing). This study aimed to evaluate the effects of indigenous bifidobacteria on intestinal microbiota and digestive enzymes in a rat model of antibiotic-associated dysbiosis. Our results showed that indigenous bifidobacteria (the Bf group) accelerate the disappearance of dyspeptic symptoms in rats and prevent an increase in chyme mass in the upper intestine compared to the group without autoprobiotics (the C1 group), but significantly increase the mass of chyme in the colon compared to the C1 group and the control group (healthy animals). In the Bf group in the gut microbiota, the content of opportunistic bacteria (Proteus spp., enteropathogenic Escherichia coli) decreased, and the content of some beneficial bacteria (Bifidobacterium spp., Dorea spp., Blautia spp., the genus Ruminococcus, Prevotella, Oscillospira) changed compared to the control group. Unlike the C1 group, in the Bf group there was no decrease in the specific activities of maltase and alkaline phosphatase in the mucosa of the upper intestine, but the specific activity of maltase was decreased in the colon chyme compared to the control and C1 groups. In the Bf group, the specific activity of aminopeptidase N was reduced in the duodenum mucosa and the colon chyme compared to the control group. We concluded that indigenous bifidobacteria can protect the microbiota and intestinal digestive enzymes in the intestine from disorders caused by dysbiosis; however, there may be impaired motor function of the colon

    Gut Digestive Function and Microbiome after Correction of Experimental Dysbiosis in Rats by Indigenous Bifidobacteria

    No full text
    In recent years, great interest has arisen in the use of autoprobiotics (indigenous bacteria isolated from the organism and introduced into the same organism after growing). This study aimed to evaluate the effects of indigenous bifidobacteria on intestinal microbiota and digestive enzymes in a rat model of antibiotic-associated dysbiosis. Our results showed that indigenous bifidobacteria (the Bf group) accelerate the disappearance of dyspeptic symptoms in rats and prevent an increase in chyme mass in the upper intestine compared to the group without autoprobiotics (the C1 group), but significantly increase the mass of chyme in the colon compared to the C1 group and the control group (healthy animals). In the Bf group in the gut microbiota, the content of opportunistic bacteria (Proteus spp., enteropathogenic Escherichia coli) decreased, and the content of some beneficial bacteria (Bifidobacterium spp., Dorea spp., Blautia spp., the genus Ruminococcus, Prevotella, Oscillospira) changed compared to the control group. Unlike the C1 group, in the Bf group there was no decrease in the specific activities of maltase and alkaline phosphatase in the mucosa of the upper intestine, but the specific activity of maltase was decreased in the colon chyme compared to the control and C1 groups. In the Bf group, the specific activity of aminopeptidase N was reduced in the duodenum mucosa and the colon chyme compared to the control group. We concluded that indigenous bifidobacteria can protect the microbiota and intestinal digestive enzymes in the intestine from disorders caused by dysbiosis; however, there may be impaired motor function of the colon

    Ru(II)–Pd(II) dinuclear complexes of di(pyridin-2-yl)amino-substituted 1,10-phenanthrolines: synthesis, characterization and application for catalysis

    No full text
    Dinuclear complexes bearing Ru(II) photoactive center are of interest for the development of efficient dual catalysts for many photocatalyzed reactions. Ditopic polypyrine ligands – bis(pyridine-2-yl)amino-1,10-phenanthrolines – containing additional coordination site (bis(pyridine-2-yl)amine, dpa) at positions 3, 4 or 5 of 1,10-phenanthroline core (Phen-3NPy2, Phen-4NPy2 and Phen-5NPy2) were synthesized. They were used as bridging ligands to obtain dinuclear complexes of composition [(bpy)2Ru(Phen-NPy2)PdCl2](PF6)2 (Ru(Phen-NPy2)Pd) via stepvise comlexing in good yields. Ru(II) is coordinated to 1,10-phenanthroline in these complexes, while Pd(II) is bound to dpa chelating moiety, which was established by NMR spectroscopy and X-ray single crystal analysis. The influence of the position of dpa in phenanthroline ring on the structural, optical and electrochemical properties of Ru(Phen-NPy2)Pd complexes was studied. The complexes possess photoluminescence in argon-saturated MeCN solution with maxima in the range of 615–625 nm, emission quantum yields range from 0.11 to 0.15 for Ru(Phen-NPy2) complexes and from 0.018 to 0.026 for dinucear Ru(Phen-NPy2)Pd complexes. All the complexes have high extinction coefficients in the range of 370–470 nm, efficiently absorb visible light and can be used as photocatalysts. The Ru2+/3+ potential in Ru(Phen-NPy2)Pd complexes showed no significant dependence on dpa position, while Pd2+/0 reduction potential was quite lower for Ru(Phen-3NPy2)Pd and Ru(Phen-NPy2)Pd, than for Ru(Phen-NPy2)Pd (–0.57V and –0.72V vs Ag/AgCl, KCl(sat), respectively). The behaviour of the complexes was studied in Сu-free Sonogashira coupling under blue LED (12 W) irradiation. The reaction proceeds three times faster when Ru(Phen-4NPy2)Pd and Ru(Phen-3NPy2)Pd are used as catalysts precursors than in the case of mixed catalytic system Ru(bpy)3(PF6)2/(RNPy2)PdCl2

    Direct observation of the dead-cone effect in quantum chromodynamics

    No full text
    The direct measurement of the QCD dead cone in charm quark fragmentation is reported, using iterative declustering of jets tagged with a fully reconstructed charmed hadron

    Direct observation of the dead-cone effect in quantum chromodynamics

    No full text
    At particle collider experiments, elementary particle interactions with large momentum transfer produce quarks and gluons (known as partons) whose evolution is governed by the strong force, as described by the theory of quantum chromodynamics (QCD) [1]. The vacuum is not transparent to the partons and induces gluon radiation and quark pair production in a process that can be described as a parton shower [2]. Studying the pattern of the parton shower is one of the key experimental tools in understanding the properties of QCD. This pattern is expected to depend on the mass of the initiating parton, through a phenomenon known as the dead-cone effect, which predicts a suppression of the gluon spectrum emitted by a heavy quark of mass m and energy E, within a cone of angular size m/E around the emitter [3]. A direct observation of the dead-cone effect in QCD has not been possible until now, due to the challenge of reconstructing the cascading quarks and gluons from the experimentally accessible bound hadronic states. Here we show the first direct observation of the QCD dead-cone by using new iterative declustering techniques [4, 5] to reconstruct the parton shower of charm quarks. This result confirms a fundamental feature of QCD, which is derived more generally from its origin as a gauge quantum field theory. Furthermore, the measurement of a dead-cone angle constitutes the first direct experimental observation of the non-zero mass of the charm quark, which is a fundamental constant in the standard model of particle physics.The direct measurement of the QCD dead cone in charm quark fragmentation is reported, using iterative declustering of jets tagged with a fully reconstructed charmed hadron.In particle collider experiments, elementary particle interactions with large momentum transfer produce quarks and gluons (known as partons) whose evolution is governed by the strong force, as described by the theory of quantum chromodynamics (QCD). These partons subsequently emit further partons in a process that can be described as a parton shower which culminates in the formation of detectable hadrons. Studying the pattern of the parton shower is one of the key experimental tools for testing QCD. This pattern is expected to depend on the mass of the initiating parton, through a phenomenon known as the dead-cone effect, which predicts a suppression of the gluon spectrum emitted by a heavy quark of mass mQm_{\rm{Q}} and energy EE, within a cone of angular size mQm_{\rm{Q}}/EE around the emitter. Previously, a direct observation of the dead-cone effect in QCD had not been possible, owing to the challenge of reconstructing the cascading quarks and gluons from the experimentally accessible hadrons. We report the direct observation of the QCD dead cone by using new iterative declustering techniques to reconstruct the parton shower of charm quarks. This result confirms a fundamental feature of QCD. Furthermore, the measurement of a dead-cone angle constitutes a direct experimental observation of the non-zero mass of the charm quark, which is a fundamental constant in the standard model of particle physics

    ÎŁ(1385)± resonance production in Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    Hadronic resonances are used to probe the hadron gas produced in the late stage of heavy-ion collisions since they decay on the same timescale, of the order of 1 to 10 fm/c, as the decoupling time of the system. In the hadron gas, (pseudo)elastic scatterings among the products of resonances that decayed before the kinetic freeze-out and regeneration processes counteract each other, the net effect depending on the resonance lifetime, the duration of the hadronic phase, and the hadronic cross sections at play. In this context, the ÎŁ(1385)± particle is of particular interest as models predict that regeneration dominates over rescattering despite its relatively short lifetime of about 5.5 fm/c. The first measurement of the ÎŁ(1385)± resonance production at midrapidity in Pb-Pb collisions at sNN−−−√=5.02 TeV with the ALICE detector is presented in this Letter. The resonances are reconstructed via their hadronic decay channel, Λπ, as a function of the transverse momentum (pT) and the collision centrality. The results are discussed in comparison with the measured yield of pions and with expectations from the statistical hadronization model as well as commonly employed event generators, including PYTHIA8/Angantyr and EPOS3 coupled to the UrQMD hadronic cascade afterburner. None of the models can describe the data. For ÎŁ(1385)±, a similar behaviour as K∗(892)0 is observed in data unlike the predictions of EPOS3 with afterburner

    Measurement of ψ (2S) production as a function of charged-particle pseudorapidity density in pp collisions at √s = 13 TeV and p–Pb collisions at √sNN = 8.16 TeV with ALICE at the LHC

    No full text
    Production of inclusive charmonia in pp collisions at center-of-mass energy of √s = 13 TeV and p–Pb collisions at center-of-mass energy per nucleon pair of √sNN = 8.16 TeV is studied as a function of charged-particle pseudorapidity density with ALICE. Ground and excited charmonium states (J/ψ, ψ(2S)) are measured from their dimuon decays in the interval of rapidity in the center-of-mass frame 2.5 < ycms < 4.0 for pp collisions, and 2.03 < ycms < 3.53 and −4.46 < ycms < −2.96 for p–Pb collisions. The charged-particle pseudorapidity density is measured around midrapidity (|η| < 1.0). In pp collisions, the measured charged-particle multiplicity extends to about six times the average value, while in p-Pb collisions at forward (backward) rapidity a multiplicity corresponding to about three (four) times the average is reached. The ψ(2S) yield increases with the charged-particle pseudorapidity density. The ratio of ψ(2S) over J/ψ yield does not show a significant multiplicity dependence in either colliding system, suggesting a similar behavior of J/ψ and ψ(2S) yields with respect to charged-particle pseudorapidity density. Results for the ψ(2S) yield and its ratio with respect to J/ψ agree with available model calculations

    Forward rapidity J/ψ production as a function of charged-particle multiplicity in pp collisions at s \sqrt{s} = 5.02 and 13 TeV

    No full text
    International audienceThe production of J/ψ is measured as a function of charged-particle multiplicity at forward rapidity in proton-proton (pp) collisions at center-of-mass energies s \sqrt{s} = 5.02 and 13 TeV. The J/ψ mesons are reconstructed via their decay into dimuons in the rapidity interval (2.5 < y < 4.0), whereas the charged-particle multiplicity density (dNch_{ch}/dη) is measured at midrapidity (|η| < 1). The production rate as a function of multiplicity is reported as the ratio of the yield in a given multiplicity interval to the multiplicity-integrated one. This observable shows a linear increase with charged-particle multiplicity normalized to the corresponding average value for inelastic events (dNch_{ch}/dη/〈dNch_{ch}/dηâŒȘ), at both the colliding energies. Measurements are compared with available ALICE results at midrapidity and theoretical model calculations. First measurement of the mean transverse momentum (〈pT_{T}âŒȘ) of J/ψ in pp collisions exhibits an increasing trend as a function of dNch_{ch}/dη/〈dNch_{ch}/dηâŒȘ showing a saturation towards high charged-particle multiplicities.[graphic not available: see fulltext
    • 

    corecore