6 research outputs found

    Synergistic Killing of Streptococcus pneumoniae with the Bacteriophage Lytic Enzyme Cpl-1 and Penicillin or Gentamicin Depends on the Level of Penicillin Resistance

    No full text
    A combination of Cpl-1, a bacteriophage lytic enzyme, and penicillin, gentamicin, levofloxacin, or azithromycin was tested against Streptococcus pneumoniae strains with various susceptibilities to penicillin. Activities of Cpl-1 and gentamicin were increasingly synergistic with a decreasing penicillin MIC, while Cpl-1 and penicillin showed synergy against an extremely penicillin-resistant strain

    Phage Lytic Enzyme Cpl-1 as a Novel Antimicrobial for Pneumococcal Bacteremia

    No full text
    Streptococcus pneumoniae is becoming increasingly antibiotic resistant worldwide, and thus new antimicrobials are badly needed. We report the use of Cpl-1, the lytic enzyme of a pneumococcal bacteriophage, as an intravenous therapy for pneumococcal bacteremia in a mouse model. A 2,000-μg dose of Cpl-1 reduced pneumococcal titers from a median of log(10) 4.70 CFU/ml to undetectable levels (<log(10) 2.00 CFU/ml) within 15 min. This dose given 1 h after intravenous infection led to 100% survival at 48 h, compared to the 20% survival of buffer-treated controls. In advanced bacteremia, treatment with two doses at 5 and 10 h still resulted in significantly longer survival (P < 0.0001) and a hazard ratio of 0.29 (95% confidence interval, 0.04 to 0.35). The enzyme is immunogenic, but the treatment efficacy was not significantly diminished after previous intravenous exposure of mice and hyperimmune rabbit serum did not neutralize the activity. Cpl-1 is also very effective as a topical nasal treatment against colonization by S. pneumoniae. In vitro, the enzyme is active against many serotypes of S. pneumoniae, independent of their penicillin resistance, and it is very specific for this species. Bacteriophage enzymes are unusual but extremely effective antimicrobials and represent a new weapon against infections with resistant bacteria

    Propionibacterium acnes as a Cause of Prosthetic Valve Aortic Root Abscess

    No full text
    Propionibacterium acnes isolates usually have relatively low virulence and are often classified as contaminants when isolated from blood and tissue cultures. We report a patient with Propionibacterium acnes bacteremia and late prosthetic valve endocarditis, complicated by an aortic root abscess

    Outcomes of mechanically ventilated patients with COVID-19 associated respiratory failure.

    No full text
    PurposeThe outcomes of patients requiring invasive mechanical ventilation for COVID-19 remain poorly defined. We sought to determine clinical characteristics and outcomes of patients with COVID-19 managed with invasive mechanical ventilation in an appropriately resourced US health care system.MethodsOutcomes of COVID-19 infected patients requiring mechanical ventilation treated within the Inova Health System between March 5, 2020 and April 26, 2020 were evaluated through an electronic medical record review.Results1023 COVID-19 positive patients were admitted to the Inova Health System during the study period. Of these, 164 (16.0%) were managed with invasive mechanical ventilation. All patients were followed to definitive disposition. 70/164 patients (42.7%) had died and 94/164 (57.3%) were still alive. Deceased patients were older (median age of 66 vs. 55, p ConclusionMortality of patients with COVID-19 requiring invasive mechanical ventilation is high, with particularly daunting mortality seen in patients of advanced age, even in a well-resourced health care system. A substantial proportion of patients requiring invasive mechanical ventilation were not of advanced age, and this group had a reasonable chance for recovery

    Drotrecogin alfa (Activated) in adults with septic shock

    Get PDF
    There have been conflicting reports on the efficacy of recombinant human activated protein C, or drotrecogin alfa (activated) (DrotAA), for the treatment of patients with septic shock.In this randomized, double-blind, placebo-controlled, multicenter trial, we assigned 1697 patients with infection, systemic inflammation, and shock who were receiving fluids and vasopressors above a threshold dose for 4 hours to receive either DrotAA (at a dose of 24 μg per kilogram of body weight per hour) or placebo for 96 hours. The primary outcome was death from any cause 28 days after randomization.At 28 days, 223 of 846 patients (26.4%) in the DrotAA group and 202 of 834 (24.2%) in the placebo group had died (relative risk in the DrotAA group, 1.09; 95% confidence interval [CI], 0.92 to 1.28; P=0.31). At 90 days, 287 of 842 patients (34.1%) in the DrotAA group and 269 of 822 (32.7%) in the placebo group had died (relative risk, 1.04; 95% CI, 0.90 to 1.19; P=0.56). Among patients with severe protein C deficiency at baseline, 98 of 342 (28.7%) in the DrotAA group had died at 28 days, as compared with 102 of 331 (30.8%) in the placebo group (risk ratio, 0.93; 95% CI, 0.74 to 1.17; P=0.54). Similarly, rates of death at 28 and 90 days were not significantly different in other predefined subgroups, including patients at increased risk for death. Serious bleeding during the treatment period occurred in 10 patients in the DrotAA group and 8 in the placebo group (P=0.81).DrotAA did not significantly reduce mortality at 28 or 90 days, as compared with placebo, in patients with septic shock. (Funded by Eli Lilly; PROWESS-SHOCK ClinicalTrials.gov number, NCT00604214.)
    corecore