284 research outputs found

    Effect of bonding of a CO molecule on the conductance of atomic metal wires

    Get PDF
    We have measured the effect of bonding of a CO molecule on the conductance of Au, Cu, Pt, and Ni atomic contacts at 4.2 K. When CO gas is admitted to the metal nano contacts, a conductance feature appears in the conductance histogram near 0.5 of the quantum unit of conductance, for all metals. For Au, the intensity of this fractional conductance feature can be tuned with the bias voltage, and it disappears at high bias voltage (above \sim 200 mV). The bonding of CO to Au appears to be weakest, and associated with monotomic Au wire formation.Comment: 6 figure

    Evidence for a single hydrogen molecule connected by an atomic chain

    Get PDF
    Stable, single-molecule conducting-bridge configurations are typically identified from peak structures in a conductance histogram. In previous work on Pt with H2_2 at cryogenic temperatures it has been shown that a peak near 1 G0G{_0} identifies a single molecule Pt-H2_{2}-Pt bridge. The histogram shows an additional structure with lower conductance that has not been identified. Here, we show that it is likely due to a hydrogen decorated Pt chain in contact with the H2_2 molecular bridge.Comment: 4 pages, 4 figure

    Stretching dependence of the vibration modes of a single-molecule Pt-H2-Pt bridge

    Get PDF
    A conducting bridge of a single hydrogen molecule between Pt electrodes is formed in a break junction experiment. It has a conductance near the quantum unit, G_0 = 2e^2/h, carried by a single channel. Using point contact spectroscopy three vibration modes are observed and their variation upon stretching and isotope substitution is obtained. The interpretation of the experiment in terms of a Pt-H_2-Pt bridge is verified by Density Functional Theory calculations for the stability, vibrational modes, and conductance of the structure.Comment: 5 pages, 4 figure

    A Software-Agnostic Agent-based Platform for Modelling Emerging Mobility Systems

    Get PDF
    Due to the rapidly accelerated innovation cycle in transport and the emergence of new mobility concepts and technologies, public authorities, policy makers, and transport planners are currently in need of the tools for sustainable spatial and transport planning in the new mobility era. In this paper, a new modular, software-agnostic and activity-based spatial and transport planning platform is designed, i.e, the HARMONY Model Suite, that facilitates a novel integration of new and existing spatial and transport modelling tools. The paper focuses on describing the architecture of the platform and its passenger mobility simulation framework, which integrates -in an interoperable manner- activity-based models, mobility service management, and traffic simulation tools for evaluating new mobility system dynamics. The service management controllers for new mobility concepts are discussed in more detail with regards to their functionality and applicability

    Transmission scheduling for tandemly-connected sensor networks with heterogeneous packet generation rates

    Get PDF
    A tandemly-connected multi-hop wireless sensor network model is studied. Each node periodically generates packets in every cycle and relays the packets in a store-and-forward manner on a lossy wireless link between two adjacent nodes. To cope with a considerable number of packet losses, we previously proposed a packet transmission scheduling framework, in which each node transmits its possessing packets multiple times according to a static time-slot allocation to recover or avoid packet losses caused either by physical conditions on links or by interference of simultaneous transmissions among near-by nodes. However, we assumed that the packet generation rate is identical over all nodes, which is not always realistic. Therefore, in this paper, we enhance our work to the case of heterogeneous packet generation rates. We derive a static time-slot allocation maximizing the probability of delivering all packets within one cycle period. By using an advanced wireless network simulator, we show its effectiveness and issues to be solved.12th International Workshop on Information Network Design (WIND-2020), in conjunction with 12th International Conference on Intelligent Networking and Collaborative Systems (INCoS-2020), August 31st - September 2nd, 2020, University of Victoria, Canada(新型コロナ感染拡大に伴い、現地開催中止

    Shot noise suppression at room temperature in atomic-scale Au junctions

    Full text link
    Shot noise encodes additional information not directly inferable from simple electronic transport measurements. Previous measurements in atomic-scale metal junctions at cryogenic temperatures have shown suppression of the shot noise at particular conductance values. This suppression demonstrates that transport in these structures proceeds via discrete quantum channels. Using a high frequency technique, we simultaneously acquire noise data and conductance histograms in Au junctions at room temperature and ambient conditions. We observe noise suppression at up to three conductance quanta, with possible indications of current-induced local heating and 1/f1/f noise in the contact region at high biases. These measurements demonstrate the quantum character of transport at room temperature at the atomic scale. This technique provides an additional tool for studying dissipation and correlations in nanodevices.Comment: 15 pages, 4 figures + supporting information (6 pages, 6 figures
    corecore