104 research outputs found

    ANKRD26 and Its Interacting Partners TRIO, GPS2, HMMR and DIPA Regulate Adipogenesis in 3T3-L1 Cells

    Get PDF
    Partial inactivation of the Ankyrin repeat domain 26 (Ankrd26) gene causes obesity and diabetes in mice and increases spontaneous and induced adipogenesis in mouse embryonic fibroblasts. However, it is not yet known how the Ankrd26 protein carries out its biological functions. We identified by yeast two-hybrid and immunoprecipitation assays the triple functional domain protein (TRIO), the G protein pathway suppressor 2 (GPS2), the delta-interacting protein A (DIPA) and the hyaluronan-mediated motility receptor (HMMR) as ANKRD26 interacting partners. Adipogenesis of 3T3-L1 cells was increased by selective down-regulation of Ankrd26, Trio, Gps2, Hmmr and Dipa. Furthermore, GPS2 and DIPA, which are normally located in the nucleus, were translocated to the cytoplasm, when the C-terminus of ANKRD26 was introduced into these cells. These findings provide biochemical evidence that ANKRD26, TRIO, GPS2 and HMMR are novel and important regulators of adipogenisis and identify new targets for the modulation of adipogenesis

    Molecular Mechanics of the α-Actinin Rod Domain: Bending, Torsional, and Extensional Behavior

    Get PDF
    α-Actinin is an actin crosslinking molecule that can serve as a scaffold and maintain dynamic actin filament networks. As a crosslinker in the stressed cytoskeleton, α-actinin can retain conformation, function, and strength. α-Actinin has an actin binding domain and a calmodulin homology domain separated by a long rod domain. Using molecular dynamics and normal mode analysis, we suggest that the α-actinin rod domain has flexible terminal regions which can twist and extend under mechanical stress, yet has a highly rigid interior region stabilized by aromatic packing within each spectrin repeat, by electrostatic interactions between the spectrin repeats, and by strong salt bridges between its two anti-parallel monomers. By exploring the natural vibrations of the α-actinin rod domain and by conducting bending molecular dynamics simulations we also predict that bending of the rod domain is possible with minimal force. We introduce computational methods for analyzing the torsional strain of molecules using rotating constraints. Molecular dynamics extension of the α-actinin rod is also performed, demonstrating transduction of the unfolding forces across salt bridges to the associated monomer of the α-actinin rod domain

    The vertebrate muscle Z-disc: sarcomere anchor for structure and signalling

    Get PDF
    The Z-disc, appearing as a fine dense line forming sarcomere boundaries in striated muscles, when studied in detail reveals crosslinked filament arrays that transmit tension and house myriads of proteins with diverse functions. At the Z-disc the barbed ends of the antiparallel actin filaments from adjoining sarcomeres interdigitate and are crosslinked primarily by layers of α-actinin. The Z-disc is therefore the site of polarity reversal of the actin filaments, as needed to interact with the bipolar myosin filaments in successive sarcomeres. The layers of α-actinin determine the Z-disc width: fast fibres have narrow (~30–50 nm) Z-discs and slow and cardiac fibres have wide (~100 nm) Z-discs. Comprehensive reviews on the roles of the numerous proteins located at the Z-disc in signalling and disease have been published; the aim here is different, namely to review the advances in structural aspects of the Z-disc

    Computational Study of the Human Dystrophin Repeats: Interaction Properties and Molecular Dynamics

    Get PDF
    Dystrophin is a large protein involved in the rare genetic disease Duchenne muscular dystrophy (DMD). It functions as a mechanical linker between the cytoskeleton and the sarcolemma, and is able to resist shear stresses during muscle activity. In all, 75% of the dystrophin molecule consists of a large central rod domain made up of 24 repeat units that share high structural homology with spectrin-like repeats. However, in the absence of any high-resolution structure of these repeats, the molecular basis of dystrophin central domain's functions has not yet been deciphered. In this context, we have performed a computational study of the whole dystrophin central rod domain based on the rational homology modeling of successive and overlapping tandem repeats and the analysis of their surface properties. Each tandem repeat has very specific surface properties that make it unique. However, the repeats share enough electrostatic-surface similarities to be grouped into four separate clusters. Molecular dynamics simulations of four representative tandem repeats reveal specific flexibility or bending properties depending on the repeat sequence. We thus suggest that the dystrophin central rod domain is constituted of seven biologically relevant sub-domains. Our results provide evidence for the role of the dystrophin central rod domain as a scaffold platform with a wide range of surface features and biophysical properties allowing it to interact with its various known partners such as proteins and membrane lipids. This new integrative view is strongly supported by the previous experimental works that investigated the isolated domains and the observed heterogeneity of the severity of dystrophin related pathologies, especially Becker muscular dystrophy

    Spectrin-based skeleton as an actor in cell signaling

    Get PDF
    This review focuses on the recent advances in functions of spectrins in non-erythroid cells. We discuss new data concerning the commonly known role of the spectrin-based skeleton in control of membrane organization, stability and shape, and tethering protein mosaics to the cellular motors and to all major filament systems. Particular effort has been undertaken to highlight recent advances linking spectrin to cell signaling phenomena and its participation in signal transduction pathways in many cell types

    Oral History Interview with Brother Vernard Ruane 3

    No full text
    A Maryknoll brother gives his opinion on the differences between the amount of those receiving holy orders in the Catholic church in the past compared to the present and explains how he came to Hawai'

    Terminal assembly of sarcomeric filaments by intermolecular beta-sheet formation

    No full text
    The contraction-relaxation cycle of muscle cells translates into large movements of several filament systems in sarcomeres, requiring special molecular mechanisms to maintain their structural integrity. Recent structural and functional data from three filaments harboring extensive arrays of immunoglobulin-like domains - titin, filamin and myomesin--have, for the first time, unraveled a common function of their terminal domains: assembly and anchoring of the respective filaments. In each case, the protein-protein interactions are mediated by antiparallel dimerization modules via intermolecular beta-sheets. These observations on terminal filament assembly indicate an attractive model for several other filament proteins that require structural characterization

    Goal line technology in soccer: are referees ready for technology in decision making

    Get PDF
    The announcement that goal line technology will be used in the 2014 FIFA World Cup to be hosted by Brazil has sparked renewed interest and debate regarding its accuracy and reliability, its influence on the fluidity and rhythm of the game, its influence on the nature of the game, its practical implementation and the psychological effects it would have on referees. When controversial decisions are made, the referee comes under extensive scrutiny by players, fans and spectators as well as commentators who have the tendency of scapegoating the referee. The purpose of the study was to examine the perceptions of soccer referees regarding the use of goal line technology in soccer. A qualitative research approach which involved conducting in depth interviews was adopted for the study. A database of qualified referees which was created by a senior referee was used to recruit a purposive sample of referees within easy access to the researchers. Referees were selected based on the following criteria: a) having a qualification to referee soccer matches, b) having at least 4 years refereeing experience, and c) being aware of goal line technology. An analysis of the transcripts revealed consistency in the responses of the respondents regarding most of the questions. The following three themes are a synthesis of the findings of the study based on their significance in terms of how frequently they were mentioned and articulated by the respondents: knowledge of technology, technology vs human factor, fairness and justice. The results of the study suggest that while referees are aware of goal line technology, they do not possess in depth knowledge of the phenomenon. It is therefore important for them to take proactive measures to update their knowledge so that they are prepared when the technology is introduced in South Africa.http://reference.sabinet.co.za/webx/access/electronic_journals/ajpherd/ajpherd_v19_n2_a2.pd
    corecore