62 research outputs found

    Nanotubos de TiO2 auto-organizados como material de electrodo para microbaterías de ión litio

    Get PDF
    II Encuentro sobre nanociencia y nanotecnología de investigadores y tecnólogos de la Universidad de Córdoba. NANOUC

    Nano-hilos de Sn y SnO crecidos sobre láminas de nano-tubos de TiO2 como electrodos de batería de ion-Li

    Get PDF
    III Encuentro sobre Nanociencia y Nanotecnología de Investigadores y Tecnólogos Andaluce

    Electrodeposition of Polymer Electrolyte Into Porous LiNi0.5Mn1.5O4 for High Performance All-Solid-State Microbatteries

    Get PDF
    We report the electrodeposition of polymer electrolyte (PMMA-PEG) in porous lithium nickel manganese oxide (LiNi0.5Mn1.5O4) cathode layer by cyclic voltammetry. The cathode-electrolyte interface of the polymer-coated LNMO electrode has been characterized by scanning electron microscopy and electrochemical techniques. Electrochemical measurements consisting of galvanostatic cycling tests and electrochemical impedance spectroscopy revealed a significant improvement of the capacity values and the increase of the operating voltage. These effects are attributed to the total filling of pores by the electrodeposited polymer that contributes to improve the reversible insertion of Li+. A complete all-solid-state microbattery consisting of electropolymerized LNMO as the cathode, a thin polymer layer as the electrolyte, and TiO2 nanotubes as the anode has been successfully fabricated and tested

    Optical and Electrochemical Properties of Self-Organized TiO2 Nanotube Arrays From Anodized Ti−6Al−4V Alloy

    Get PDF
    Due to their high specific surface area and advanced properties, TiO2 nanotubes (TiO2 NTs) have a great significance for production and storage of energy. In this paper, TiO2 NTs were synthesized from anodization of Ti-6Al-4V alloy at 60 V for 3 h in fluoride ethylene glycol electrolyte by varying the water content and further annealing treatment. The morphological, structural, optical and electrochemical performances of TiO2 NTs were investigated by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), UV-Visible spectroscopy and electrochemical characterization techniques. By varying the water content in the solution, a honeycomb and porous structure was obtained at low water content and the presence of (α + β) phase in Ti-6Al-4V alloy caused not uniform etching. With an additional increase in water content, a nanotubular structure is formed in the (α + β) phases with different morphological parameters. The anatase TiO2 NTs synthesized with 20 wt% H2O shows an improvement in absorption band that extends into the visible region due the presence of vanadium oxide in the structure and the effective band gap energy (Eg) value of 2.25 eV. The TiO2 NTs electrode also shows a good cycling performance, delivering a reversible capacity of 82 mAh.g−1 (34 μAh.cm−2.μm−1) at 1C rate over 50 cycles

    ALD growth of MoS2 nanosheets on TiO2 nanotube supports

    Get PDF
    Two-dimensional MoS2 nanostructures are highly interesting and effective in a number of energy-related applications. In this work, the synthesis of ultra-thin MoS2 nanosheets produced by the thermal Atomic Layer Deposition (ALD) process is reported for the first time using a previously unpublished set of precursors, namely bis(t-butylimido)bis(dimethylamino)molybdenum and hydrogen sulfide. These nanosheets are homogenously deposited within one-dimensional anodic TiO2 nanotube layers that act as a high surface area conductive support for the MoS2 nanosheets. The decoration of high aspect ratio TiO2 nanotube layers with MoS2 nanosheets over the entire nanotube layer thickness is shown for the first time. The homogeneous distribution of the MoS2 nanosheets is proved by STEM/EDX. This resulting new composite is employed as anode for Li-ion microbatteries. The MoS2-decorated TiO2 nanotube layers show a superior performance compared to their counterparts without MoS2. Compared to electrochemical performance of pristine TiO2 nanotube, a more than 50% higher areal capacity and a coulombic efficiency of 98% are obtained on the MoS2 decorated TiO2 nanotube layers, demonstrating clear synergic benefits of the new composite structure

    TiO2 Nanotube Layers Decorated with Al2O3/MoS2/Al2O3 as Anode for Li-ion Microbatteries with Enhanced Cycling Stability

    Get PDF
    TiO2 nanotube layers (TNTs) decorated with Al2O3/MoS2/Al2O3 are investigated as a negative electrode for 3D Li-ion microbatteries. Homogenous nanosheets decoration of MoS2, sandwiched between Al2O3 coatings within self-supporting TNTs was carried out using atomic layer deposition (ALD) process. The structure, morphology, and electrochemical performance of the Al2O3/MoS2/Al2O3-decorated TNTs were studied using scanning transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and chronopotentiometry. Al2O3/MoS2/Al2O3-decorated TNTs deliver an areal capacity almost three times higher than that obtained for MoS2-decorated TNTs and as-prepared TNTs after 100 cycles at 1C. Moreover, stable and high discharge capacity (414 mu Ah cm(-2)) has been obtained after 200 cycles even at very fast kinetics (3C)

    Anodické nanotrubice TiO2: Slibný materiál pro přeměnu a skladování energie

    No full text
    Self-organized TiO2 nanotube (TNT) layers formed by an anodization process have emerged for the conception of innovative systems in the conversion and storage of energy. Herein, the latest progress in power sources with a remarkable electrochemical performance involving these versatile nanomaterials is reported. Besides the key role of their physico-chemical properties, the significance of interfaces established with other materials to achieve the fabrication of batteries, supercapacitors and fuel cells showing high electrochemical performance is also high-lighted. Particularly, recent approaches based on the chemical modifications of the TNTs by doping, solid-state reactions, atomic layer deposition, electrodeposition of metallic nanoparticles and copolymers are presented. In addition, the strong potential offered by TNT layers for future research works is discussed. This progress report seeks to demonstrate the strong input of anodic TNT layers for developing the next generation of autonomous devices while stimulating more research efforts dedicated to modern technological applications.Samoorganizované vrstvy TiO2 nanotrubic (TNT) tvořené procesem anodizace,se ukázaly jako koncepčně-inovativní materiály v přeměně a skladování energie. V této práci je popsán nejnovější pokrok v energetických zařízeních s pozoruhodným elektrochemickým výkonem zahrnujícím tyto všestranné nanomateriály. Kromě jejich klíčových fyzikálně-chemických vlastností je také zdůrazněn význam rozhraní s jinými materiály, který je podstatný pro dosažení efektivní přípravy baterií, superkondenzátorů a palivových článků, vykazujících vysoký elektrochemický výkon. Konkrétně jsou zde prezentovány nejnovější přístupy založené na chemických modifikacích TNT dopováním, reakcemi v pevné fázi, depozicí atomárních vrste, elektrolytickým nanášením kovových nanočástic a kopolymerů. Kromě toho je diskutován slibný potenciál, který nabízejí vrstvy TNT pro budoucí výzkumné práce. Tato zpráva o pokroku se snaží demonstrovat silný přínos anodických vrstev TNT pro vývoj nové generace autonomních zařízení a zároveň stimulovat další výzkumné úsilí věnované moderním technologickým aplikacím

    All-Solid-State Lithium Ion Batteries Using Self-Organized TiO2 Nanotubes Grown from Ti-6Al-4V Alloy

    No full text
    International audienceAll-solid-state batteries were fabricated by assembling a layer of self-organized TiO 2 nanotubes grown on as anode, a thin-film of polymer as an electrolyte and separator, and a layer of composite LiFePO 4 as a cathode. The synthesis of self-organized TiO 2 NTs from Ti-6Al-4V alloy was carried out via one-step electrochemical anodization in a fluoride ethylene glycol containing electrolytes. The electrodeposition of the polymer electrolyte onto anatase TiO 2 NTs was performed by cyclic voltammetry. The anodized Ti-6Al-4V alloys were characterized by scanning electron microscopy and X-ray diffraction. The electrochemical properties of the anodized Ti-6Al-4V alloys were investigated by cyclic voltammetry and chronopotentiometry techniques. The full-cell shows a high first-cycle Coulombic efficiency of 96.8% with a capacity retention of 97.4% after 50 cycles and delivers a stable discharge capacity of 63 µAh cm −2 µm −1 (119 mAh g −1) at a kinetic rate of C/10
    corecore