998 research outputs found

    Structural Analysis and Testing of the Inflatable Re-entry Vehicle Experiment (IRVE)

    Get PDF
    The Inflatable Re-entry Vehicle Experiment (IRVE) is a 3.0 meter, 60 degree half-angle sphere cone, inflatable aeroshell experiment designed to demonstrate various aspects of inflatable technology during Earth re-entry. IRVE will be launched on a Terrier-Improved Orion sounding rocket from NASA s Wallops Flight Facility in the fall of 2006 to an altitude of approximately 164 kilometers and re-enter the Earth s atmosphere. The experiment will demonstrate exo-atmospheric inflation, inflatable structure leak performance throughout the flight regime, structural integrity under aerodynamic pressure and associated deceleration loads, thermal protection system performance, and aerodynamic stability. Structural integrity and dynamic response of the inflatable will be monitored with photogrammetric measurements of the leeward side of the aeroshell during flight. Aerodynamic stability and drag performance will be verified with on-board inertial measurements and radar tracking from multiple ground radar stations. In addition to demonstrating inflatable technology, IRVE will help validate structural, aerothermal, and trajectory modeling and analysis techniques for the inflatable aeroshell system. This paper discusses the structural analysis and testing of the IRVE inflatable structure. Equations are presented for calculating fabric loads in sphere cone aeroshells, and finite element results are presented which validate the equations. Fabric material properties and testing are discussed along with aeroshell fabrication techniques. Stiffness and dynamics tests conducted on a small-scale development unit and a full-scale prototype unit are presented along with correlated finite element models to predict the in-flight fundamental mo

    A survey of spinning test particle orbits in Kerr spacetime

    Get PDF
    We investigate the dynamics of the Papapetrou equations in Kerr spacetime. These equations provide a model for the motion of a relativistic spinning test particle orbiting a rotating (Kerr) black hole. We perform a thorough parameter space search for signs of chaotic dynamics by calculating the Lyapunov exponents for a large variety of initial conditions. We find that the Papapetrou equations admit many chaotic solutions, with the strongest chaos occurring in the case of eccentric orbits with pericenters close to the limit of stability against plunge into a maximally spinning Kerr black hole. Despite the presence of these chaotic solutions, we show that physically realistic solutions to the Papapetrou equations are not chaotic; in all cases, the chaotic solutions either do not correspond to realistic astrophysical systems, or involve a breakdown of the test-particle approximation leading to the Papapetrou equations (or both). As a result, the gravitational radiation from bodies spiraling into much more massive black holes (as detectable, for example, by LISA, the Laser Interferometer Space Antenna) should not exhibit any signs of chaos.Comment: Submitted to Phys. Rev. D. Follow-up to gr-qc/0210042. Figures are low-resolution in order to satisfy archive size constraints; a high-resolution version is available at http://www.michaelhartl.com/papers

    Randomized phase II study investigating pazopanib versus weekly paclitaxel in relapsed or progressive urothelial cancer

    Get PDF
    Purpose: Two previous single-arm trials have drawn conflicting conclusions regarding the activity of pazopanib in urothelial cancers after failure of platinum-based chemotherapy. Patients and Methods: This randomized (1:1) open-label phase II trial compared the efficacy of pazopanib 800 mg orally with paclitaxel (80 mg/m2 days 1, 8, and 15 every 28 days) in the second-line setting. The primary end point was overall survival (OS). Results: Between August 2012 and October 2014, 131 patients, out of 140 planned, were randomly assigned. The study was terminated early on the recommendation of the independent data monitoring committee because of futility. Final analysis after the preplanned number of deaths (n = 110) occurred after a median follow-up of 18 months. One hundred fifteen deaths had occurred at the final data extract presented here. Median OS was 8.0 months for paclitaxel (80% CI, 6.9 to 9.7 months) and 4.7 months for pazopanib (80% CI, 4.2 to 6.4 months). The hazard ratio (HR) adjusted for baseline stratification factors was 1.28 (80% CI, 0.99 to 1.67; one-sided P = .89). Median progression-free survival was 4.1 months for paclitaxel (80% CI, 3.0 to 5.6 months) and 3.1 months for pazopanib (80% CI, 2.7 to 4.6 months; HR, 1.09; 80% CI, 0.85 to 1.40; one-sided P = .67). Discontinuations for toxicity occurred in 7.8% and 23.1% for paclitaxel and pazopanib, respectively. Conclusion: Pazopanib did not have greater efficacy than paclitaxel in the second-line treatment of urothelial cancers. There was a trend toward superior OS for paclitaxel

    In situ measurements of near-surface hydraulic conductivity in engineered clay slopes

    Get PDF
    In situ measurements of near-saturated hydraulic conductivity in fine grained soils have been made at six exemplar UK transport earthwork sites: three embankment and three cutting slopes. This paper reports 143 individual measurements and considers the factors that influence the spatial and temporal variability obtained. The test methods employed produce near-saturated conditions and flow under constant head. Full saturation is probably not achieved due to preferential and by-pass flow occurring in these desiccated soils. For an embankment, hydraulic conductivity was found to vary by five orders of magnitude in the slope near-surface (0 to 0.3 metres depth), decreasing by four orders of magnitude between 0.3 and 1.2 metres depth. This extremely high variability is in part due to seasonal temporal changes controlled by soil moisture content, which can account for up to 1.5 orders of magnitude of this variability. Measurements of hydraulic conductivity at a cutting also indicated a four orders of magnitude range of hydraulic conductivity for the near-surface, with strong depth dependency of a two orders of magnitude decrease from 0.2 to 0.6 metres depth. The main factor controlling the large range is found to be spatial variability in the soil macro structure generated by wetting/drying cycle driven desiccation and roots. The measurements of hydraulic conductivity reported in this paper were undertaken to inform and provide a benchmark for the hydraulic parameters used in numerical models of groundwater flow. This is an influential parameter in simulations incorporating the combined weather/vegetation/infiltration/soil interaction mechanisms that are required to assess the performance and deterioration of earthwork slopes in a changing climate

    Gravitational ultrarelativistic spin-orbit interaction and the weak equivalence principle

    Full text link
    It is shown that the gravitational ultrarelativistic spin-orbit interaction violates the weak equivalence principle in the traditional sense. This fact is a direct consequence of the Mathisson-Papapetrou equations in the frame of reference comoving with a spinning test particle. The widely held assumption that the deviation of a spinning test body from a geodesic trajectory is caused by tidal forces is not correctComment: 12 page

    Extreme Mass Ratio Inspirals: LISA's unique probe of black hole gravity

    Full text link
    In this review article I attempt to summarise past and present-ongoing-work on the problem of the inspiral of a small body in the gravitational field of a much more massive Kerr black hole. Such extreme mass ratio systems, expected to occur in galactic nuclei, will constitute prime sources of gravitational radiation for the future LISA gravitational radiation detector. The article's main goal is to provide a survey of basic celestial mechanics in Kerr spacetime and calculations of gravitational waveforms and backreaction on the small body's orbital motion, based on the traditional `flux-balance' method and the Teukolsky black hole perturbation formalism.Comment: Invited review article, 45 pages, 23 figure

    Research-informed design, management and maintenance of infrastructure slopes: development of a multi-scalar approach

    Get PDF
    The UK’s transport infrastructure is one of the most heavily used in the world. The performance of these networks is critically dependent on the performance of cutting and embankment slopes which make up £20B of the £60B asset value of major highway infrastructure alone. The rail network in particular is also one of the oldest in the world: many of these slopes are suffering high incidents of instability (increasing with time). This paper describes the development of a fundamental understanding of earthwork material and system behaviour, through the systematic integration of research across a range of spatial and temporal scales. Spatially these range from microscopic studies of soil fabric, through elemental materials behaviour to whole slope modelling and monitoring and scaling up to transport networks. Temporally, historical and current weather event sequences are being used to understand and model soil deterioration processes, and climate change scenarios to examine their potential effects on slope performance in futures up to and including the 2080s. The outputs of this research are being mapped onto the different spatial and temporal scales of infrastructure slope asset management to inform the design of new slopes through to changing the way in which investment is made into aging assets. The aim ultimately is to help create a more reliable, cost effective, safer and more resilient transport system

    Biological and engineering impacts of climate on slopes -learning from full-scale

    Get PDF
    ABSTRACT: Our climate is set to change significantly over the next century; future change is likely to have a serious effect on UK slopes. The scenario of hotter drier summers, followed by more intense periods of rainfall has the potential to reduce stability by increasing degradation mechanisms and/or increasing positive pore water pressure generation. There is evidence that the scenario of more intense rainfall is already having an impact on the UK slopes. However, there is also potential for stability to be improved through the generation of greater suctions during longer periods of drought. Newcastle, Southampton, Belfast, Durham and Loughborough Universities have all been carrying out research into the impacts of climate and vegetation on embankment and cut slope stability. These five Universities, along with international partners in Canada, Singapore, China, South Africa, France and Portugal, are conducting a collaboration programme the aim of which is to link research groups undertaking full-scale monitoring of slopes to improve the understanding of the complex interaction between climate, vegetation and clay soils. This paper presents results of current full scale infrastructure slope monitoring and model development at the involved universities and plans for future collaborations
    corecore