228 research outputs found

    A random matrix decimation procedure relating β=2/(r+1)\beta = 2/(r+1) to β=2(r+1)\beta = 2(r+1)

    Full text link
    Classical random matrix ensembles with orthogonal symmetry have the property that the joint distribution of every second eigenvalue is equal to that of a classical random matrix ensemble with symplectic symmetry. These results are shown to be the case r=1r=1 of a family of inter-relations between eigenvalue probability density functions for generalizations of the classical random matrix ensembles referred to as β\beta-ensembles. The inter-relations give that the joint distribution of every (r+1)(r+1)-st eigenvalue in certain β\beta-ensembles with β=2/(r+1)\beta = 2/(r+1) is equal to that of another β\beta-ensemble with β=2(r+1)\beta = 2(r+1). The proof requires generalizing a conditional probability density function due to Dixon and Anderson.Comment: 19 pages, 1 figur

    Fermion Masses and Mixing in Intersecting Branes Scenarios

    Full text link
    We study the structure of Yukawa couplings in intersecting D6-branes wrapping a factorizable 6-torus compact space T^6. Models with MSSM-like spectrum are analyzed and found to fail in predicting the quark mass spectrum because of the way in which the family structure for the left-handed, right-handed quarks and, eventually, the Higgses is `factorized' among the different tori. In order to circumvent this, we present a model with three supersymmetric Higgs doublets which satisfies the anomaly cancellation condition in a more natural way than the previous models, where quarks were not treated universally regarding their branes assignments, or some particular branes were singled out being invariant under orientifold projection. In our model, the family structures for the left, right quarks, left leptons and the Higgses arise from one of the tori and can naturally lead to universal strength Yukawa couplings which accommodate the quark mass hierarchy and the mixing angles.Comment: 21 pages, latex, matches the Phys. Rev. D versio

    Absolute Proper Motions to B~22.5: IV. Faint, Low Velocity White Dwarfs and the White Dwarf Population Density Law

    Get PDF
    The reduced proper motion diagram (RPMD) for a complete sample of faint stars with high accuracy proper motions in the North Galactic Pole field SA57 is investigated. Eight stars with very large reduced proper motions are identified as faint white dwarf candidates. We discriminate these white dwarf candidates from the several times more numerous QSOs based on proper motion and variability. We discuss the implausibility that these stars could be any kind of survey contaminant. If {\it bona fide} white dwarfs, the eight candidates found here represent a portion of the white dwarf population hitherto uninvestigated by previous surveys by virtue of the faint magnitudes and low proper motions. The newly discovered stars suggest a disk white dwarf scaleheight larger than the values of 250-350 pc typically assumed in assessments of the local white dwarf density. Both a <V/V_{max}> and a more complex maximum likelihood analysis of the spatial distribution of our likely thin disk white dwarfs yield scaleheights of 400-600 pc while at the same time give a reasonable match to the local white dwarf volume density found in other surveys. Our results could have interesting implications for white dwarfs as potential MACHO objects. We can place some direct constraints (albeit weak ones) on the contribution of halo white dwarfs to the dark matter of the Galaxy. Moreover, the elevated scale height that we measure for the thin disk could alter the interpretation of microlensing results to the extent of making white dwarfs untenable as the dominant MACHO contributor. (Abridged)Comment: 38 pages, 5 figures, to appear in April Ap

    The Isl1/Ldb1 complex orchestrates heart-specific chromatin organization and transcriptional regulation

    Get PDF
    Cardiac stem/progenitor cells hold great potential for regenerative therapies however the mechanisms regulating their expansion and differentiation remain insufficiently defined. Here we show that the multi-adaptor protein Ldb1 is a central regulator of cardiac progenitor cell differentiation and second heart field (SHF) development. Mechanistically, we demonstrate that Ldb1 binds to the key regulator of SHF progenitors Isl1 and protects it from proteasomal degradation. Furthermore, the Isl1/Ldb1 complex promotes long-range promoter-enhancer interactions at the loci of the core cardiac transcription factors Mef2c and Hand2. Chromosome conformation capture followed by sequencing identified surprisingly specific, Ldb1-mediated interactions of the Isl1/Ldb1 responsive Mef2c anterior heart field enhancer with genes which play key roles in cardiac progenitor cell function and cardiovascular development. Importantly, the expression of these genes was downregulated upon Ldb1 depletion and Isl1/Ldb1 haplodeficiency. In conclusion, the Isl1/Ldb1 complex orchestrates a network for heart-specific transcriptional regulation and coordination in three-dimensional space during cardiogenesis

    Chirality and Symmetry Breaking in a discrete internal Space

    Full text link
    In previous papers the permutation group S_4 has been suggested as an ordering scheme for elementary particles, and the appearance of this finite symmetry group was taken as indication for the existence of a discrete inner symmetry space underlying elementary particle interactions. Here it is pointed out that a more suitable choice than the tetrahedral group S_4 is the pyritohedral group A_4 x Z_2 because its vibrational spectrum exhibits exactly the mass multiplet structure of the 3 fermion generations. Furthermore it is noted that the same structure can also be obtained from a primordial symmetry breaking S_4 --> A_4. Since A_4 is a chiral group, while S_4 is achiral, an argument can be given why the chirality of the inner pyritohedral symmetry leads to parity violation of the weak interactions.Comment: 42 pages, 3 table

    Pure adaptive search in monte carlo optimization

    Full text link
    Pure adaptive search constructs a sequence of points uniformly distributed within a corresponding sequence of nested regions of the feasible space. At any stage, the next point in the sequence is chosen uniformly distributed over the region of feasible space containing all points that are equal or superior in value to the previous points in the sequence. We show that for convex programs the number of iterations required to achieve a given accuracy of solution increases at most linearly in the dimension of the problem. This compares to exponential growth in iterations required for pure random search.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47920/1/10107_2005_Article_BF01582296.pd
    • …
    corecore