783 research outputs found

    Distribution of Mesoscale Convective Complex Rainfall in the United States

    Get PDF
    Several annual mesoscale convective complex (MCC) summaries have been compiled since Maddox strictly defined their criteria in 1980. These previous studies have largely been independent of each other and therefore have not established the extended spatial and temporal patterns associated with these large, quasi-circular, and, typically, severe convective systems. This deficiency is primarily due to the difficulty of archiving enough satellite imagery to accurately record each MCC based on Maddox’s criteria. Consequently, this study utilizes results from each of the MCC summaries compiled between 1978 and 1999 for the United States in order to develop a more complete climatology, or description of long-term means and interannual variation, of these storms. Within the 22-yr period, MCC summaries were compiled for a total of 15 yr. These 15 yr of MCC data are employed to establish estimated tracks for all MCCs documented and, thereafter, are utilized to determine MCC populations on a monthly, seasonal, annual, and multiyear basis. Subsequent to developing an extended climatology of MCCs, the study ascertains the spatial and temporal patterns of MCC rainfall and determines the precipitation contributions made by MCCs over the central and eastern United States. Results indicate that during the warm season, significant portions of the Great Plains receive, on average, between 8% and 18% of their total precipitation from MCC rainfall. However, there is large yearly and even monthly variability in the location and frequency of MCC events that leads to highly variable precipitation contributions

    3D ground model development for an active landslide in Lias mudrocks using geophysical, remote sensing and geotechnical methods

    Get PDF
    A ground model of an active and complex landslide system in instability prone Lias mudrocks of North Yorkshire, UK is developed through an integrated approach, utilising geophysical, geotechnical and remote sensing investigative methods. Surface geomorphology is mapped and interpreted using immersive 3D visualisation software to interpret airborne light detection and ranging data and aerial photographs. Subsurface structure is determined by core logging and 3D electrical resistivity tomography (ERT), which is deployed at two scales of resolution to provide a means of volumetrically characterising the subsurface expression of both site scale (tens of metres) geological structure, and finer (metre to sub-metre) scale earth-flow related structures. Petrophysical analysis of the borehole core samples is used to develop relationships between the electrical and physical formation properties, to aid calibration and interpretation of 3D ERT images. Results of the landslide investigation reveal that an integrated approach centred on volumetric geophysical imaging successfully achieves a detailed understanding of structure and lithology of a complex landslide system, which cannot be achieved through the use of remotely sensed data or discrete intrusive sampling alone

    Biogeochemical processes in the active layer and permafrost of a high Arctic fjord valley

    Get PDF
    Warming of ground is causing microbial decomposition of previously frozen sedimentary organic carbon in Arctic permafrost. However, the heterogeneity of the permafrost landscape and its hydrological processes result in different biogeochemical processes across relatively small scales, with implications for predicting the timing and magnitude of permafrost carbon emissions. The biogeochemical processes of iron- and sulfate-reduction produce carbon dioxide and suppress methanogenesis. Hence, in this study, the biogeochemical processes occurring in the active layer and permafrost of a high Arctic fjord valley in Svalbard are identified from the geochemical and stable isotope analysis of aqueous and particulate fractions in sediment cores collected from ice-wedge polygons with contrasting water content. In the drier polygons, only a small concentration of organic carbon (<5.40 dry weight%) has accumulated. Sediment cores from these drier polygons have aqueous and solid phase chemistries that imply sulfide oxidation coupled to carbonate and silicate dissolution, leading to high concentrations of aqueous iron and sulfate in the pore water profiles. These results are corroborated by δ34S and δ18O values of sulfate in active layer pore waters, which indicate the oxidative weathering of sedimentary pyrite utilising either oxygen or ferric iron as oxidising agents. Conversely, in the sediments of the consistently water-saturated polygons, which contain a high content of organic carbon (up to 45 dry weight%), the formation of pyrite and siderite occurred via the reduction of iron and sulfate. δ34S and δ18O values of sulfate in active layer pore waters from these water-saturated polygons display a strong positive correlation (R2 = 0.98), supporting the importance of sulfate reduction in removing sulfate from the pore water. The significant contrast in the dominant biogeochemical processes between the water-saturated and drier polygons indicates that small-scale hydrological variability between polygons induces large differences in the concentration of organic carbon and in the cycling of iron and sulfur, with ramifications for the decomposition pathway of organic carbon in permafrost environments

    Absence of a metallic phase in random-bond Ising models in two dimensions: applications to disordered superconductors and paired quantum Hall states

    Full text link
    When the two-dimensional random-bond Ising model is represented as a noninteracting fermion problem, it has the same symmetries as an ensemble of random matrices known as class D. A nonlinear sigma model analysis of the latter in two dimensions has previously led to the prediction of a metallic phase, in which the fermion eigenstates at zero energy are extended. In this paper we argue that such behavior cannot occur in the random-bond Ising model, by showing that the Ising spin correlations in the metallic phase violate the bound on such correlations that results from the reality of the Ising couplings. Some types of disorder in spinless or spin-polarized p-wave superconductors and paired fractional quantum Hall states allow a mapping onto an Ising model with real but correlated bonds, and hence a metallic phase is not possible there either. It is further argued that vortex disorder, which is generic in the fractional quantum Hall applications, destroys the ordered or weak-pairing phase, in which nonabelian statistics is obtained in the pure case.Comment: 13 pages; largely independent of cond-mat/0007254; V. 2: as publishe

    Global Fluctuation Spectra in Big Crunch/Big Bang String Vacua

    Full text link
    We study Big Crunch/Big Bang cosmologies that correspond to exact world-sheet superconformal field theories of type II strings. The string theory spacetime contains a Big Crunch and a Big Bang cosmology, as well as additional ``whisker'' asymptotic and intermediate regions. Within the context of free string theory, we compute, unambiguously, the scalar fluctuation spectrum in all regions of spacetime. Generically, the Big Crunch fluctuation spectrum is altered while passing through the bounce singularity. The change in the spectrum is characterized by a function Δ\Delta, which is momentum and time-dependent. We compute Δ\Delta explicitly and demonstrate that it arises from the whisker regions. The whiskers are also shown to lead to ``entanglement'' entropy in the Big Bang region. Finally, in the Milne orbifold limit of our superconformal vacua, we show that Δ→1\Delta\to 1 and, hence, the fluctuation spectrum is unaltered by the Big Crunch/Big Bang singularity. We comment on, but do not attempt to resolve, subtleties related to gravitational backreaction and light winding modes when interactions are taken into account.Comment: 68 pages, 1 figure; typos correcte

    Solar Forcing of the Polar Atmosphere

    Get PDF
    We present highly resolved, annually dated, calibrated proxies for atmospheric circulation from several Antarctic ice cores (ITASE (International Trans-Antarctic Scientific Expedition), Siple Dome, Law Dome) that reveal decadal-scale associations with a South Pole ice-core Be-10 proxy for solar variability over the last 600 years and annual-scale associations with solar variability since AD 1720. We show that increased (decreased) solar irradiance is associated with increased (decreased) zonal wind strength near the edge of the Antarctic polar vortex. The association is particularly strong in the Indian and Pacific Oceans and as such may contribute to understanding climate forcing that controls drought in Australia and other Southern Hemisphere climate events. We also include evidence suggestive of solar forcing of atmospheric circulation near the edge of the Arctic polar vortex based on ice-core records from Mount Logan, Yukon Territory, Canada, and both central and south Greenland as enticement for future investigations. Our identification of solar forcing of the polar atmosphere and its impact on lower latitudes offers a mechanism for better understanding modern climate variability and potentially the initiation of abrupt climate-change events that operate on decadal and faster scales

    Classical approach in quantum physics

    Full text link
    The application of a classical approach to various quantum problems - the secular perturbation approach to quantization of a hydrogen atom in external fields and a helium atom, the adiabatic switching method for calculation of a semiclassical spectrum of hydrogen atom in crossed electric and magnetic fields, a spontaneous decay of excited states of a hydrogen atom, Gutzwiller's approach to Stark problem, long-lived excited states of a helium atom recently discovered with the help of PoincareËŠ\acute{\mathrm{e}} section, inelastic transitions in slow and fast electron-atom and ion-atom collisions - is reviewed. Further, a classical representation in quantum theory is discussed. In this representation the quantum states are treating as an ensemble of classical states. This approach opens the way to an accurate description of the initial and final states in classical trajectory Monte Carlo (CTMC) method and a purely classical explanation of tunneling phenomenon. The general aspects of the structure of the semiclassical series such as renormgroup symmetry, criterion of accuracy and so on are reviewed as well. In conclusion, the relation between quantum theory, classical physics and measurement is discussed.Comment: This review paper was rejected from J.Phys.A with referee's comment "The author has made many worthwhile contributions to semiclassical physics, but this article does not meet the standard for a topical review"

    Spin, charge and orbital ordering in ferrimagnetic insulator YBaMn2_2O5_5

    Full text link
    The oxygen-deficient (double) perovskite YBaMn2_2O5_5, containing corner-linked MnO5_5 square pyramids, is found to exhibit ferrimagnetic ordering in its ground state. In the present work we report generalized-gradient-corrected, relativistic first-principles full-potential density-functional calculations performed on YBaMn2_2O5_5 in the nonmagnetic, ferromagnetic and ferrimagnetic states. The charge, orbital and spin orderings are explained with site-, angular momentum- and orbital-projected density of states, charge-density plots, electronic structure and total energy studies. YBaMn2_2O5_5 is found to stabilize in a G-type ferrimagnetic state in accordance with experimental results. The experimentally observed insulating behavior appears only when we include ferrimagnetic ordering in our calculation. We observed significant optical anisotropy in this material originating from the combined effect of ferrimagnetic ordering and crystal field splitting. In order to gain knowledge about the presence of different valence states for Mn in YBaMn2_2O5_5 we have calculated KK-edge x-ray absorption near-edge spectra for the Mn and O atoms. The presence of the different valence states for Mn is clearly established from the x-ray absorption near-edge spectra, hyperfine field parameters and the magnetic properties study. Among the experimentally proposed structures, the recently reported description based on PP4/nmmnmm is found to represent the stable structure

    Finite Theories and the SUSY Flavor Problem

    Get PDF
    We study a finite SU(5) grand unified model based on the non-Abelian discrete symmetry A_4. This model leads to the democratic structure of the mass matrices for the quarks and leptons. In the soft supersymmetry breaking sector, the scalar trilinear couplings are aligned and the soft scalar masses are degenerate, thus solving the SUSY flavor problem.Comment: 17 pages, LaTeX, 1 figur
    • …
    corecore