216 research outputs found

    Resolution studies of cosmic-ray tracks in a TPC with GEM readout

    Full text link
    A large volume TPC is a leading candidate for the central tracking detector at a future high energy linear collider. To improve the resolution a new readout based on micro-pattern gas detectors is being developed. Measurements of the spatial resolution of cosmic-ray tracks in a GEM TPC are presented. We find that the resolution suffers if the readout pads are too wide with respect to the charge distribution at the readout plane due to insufficient charge sharing. For narrow pads of 2 x 6 mm**2 we measure a resolution of 100 micometer at short drift distances in the absence of an axial magnetic field. The dependence of the spatial resolution as a function of drift distance allows the determination of the underlying electron statistics. Our results show that the present technique uses about half the statistical power available from the number of primary electrons. The track angle effect is observed as expected.Comment: 18 pages, 8 figures, version as published in Nucl. Inst. Met

    Evaluating dimensionality reduction for genomic prediction

    Get PDF
    The development of genomic selection (GS) methods has allowed plant breeding programs to select favorable lines using genomic data before performing field trials. Improvements in genotyping technology have yielded high-dimensional genomic marker data which can be difficult to incorporate into statistical models. In this paper, we investigated the utility of applying dimensionality reduction (DR) methods as a pre-processing step for GS methods. We compared five DR methods and studied the trend in the prediction accuracies of each method as a function of the number of features retained. The effect of DR methods was studied using three models that involved the main effects of line, environment, marker, and the genotype by environment interactions. The methods were applied on a real data set containing 315 lines phenotyped in nine environments with 26,817 markers each. Regardless of the DR method and prediction model used, only a fraction of features was sufficient to achieve maximum correlation. Our results underline the usefulness of DR methods as a key pre-processing step in GS models to improve computational efficiency in the face of ever-increasing size of genomic data

    Homogeneous nucleation of a non-critical phase near a continuous phase transition

    Get PDF
    Homogeneous nucleation of a new phase near a second, continuous, transition, is considered. The continuous transition is in the metastable region associated with the first-order phase transition, one of whose coexisting phases is nucleating. Mean-field calculations show that as the continuous transition is approached, the size of the nucleus varies as the response function of the order parameter of the continuous transition. This response function diverges at the continuous transition, as does the temperature derivative of the free energy barrier to nucleation. This rapid drop of the barrier as the continuous transition is approached means that the continuous transition acts to reduce the barrier to nucleation at the first-order transition. This may be useful in the crystallisation of globular proteins.Comment: 6 pages, 1 figur

    Introgression of “ QTL‐hotspot ” region enhances drought tolerance and grain yield in three elite chickpea cultivars

    Get PDF
    With an aim of enhancing drought tolerance using a marker‐assisted backcrossing (MABC) approach, we introgressed the “QTL‐hotspot” region from ICC 4958 accession that harbors quantitative trait loci (QTLs) for several drought‐tolerance related traits into three elite Indian chickpea (Cicer arietinum L.) cultivars: Pusa 372, Pusa 362, and DCP 92‐3. Of eight simple sequence repeat (SSR) markers in the QTL‐hotspot region, two to three polymorphic markers were used for foreground selection with respective cross‐combinations. A total of 47, 53, and 46 SSRs were used for background selection in case of introgression lines (ILs) developed in genetic backgrounds of Pusa 372, Pusa 362, and DCP 92‐3, respectively. In total, 61 ILs (20 BC3F3 in Pusa 372; 20 BC2F3 in Pusa 362, and 21 BC3F3 in DCP 92‐3), with >90% recurrent parent genome recovery were developed. Six improved lines in different genetic backgrounds (e.g. BGM 10216 in Pusa 372; BG 3097 and BG 4005 in Pusa 362; IPC(L4‐14), IPC(L4‐16), and IPC(L19‐1) in DCP 92‐3) showed better performance than their respective recurrent parents. BGM 10216, with 16% yield gain over Pusa 372, has been released as Pusa Chickpea 10216 by the Central Sub‐Committees on Crop Standards, Notification and Release of Varieties of Agricultural Crops, Ministry of Agriculture and Farmers Welfare, Government of India, for commercial cultivation in India. In summary, this study reports introgression of the QTL‐hotspot for enhancing yield under rainfed conditions, development of several introgression lines, and release of Pusa Chickpea 10216 developed through molecular breeding in India

    Development of High Yielding Fusarium Wilt Resistant Cultivar by Pyramiding of “Genes” Through Marker-Assisted Backcrossing in Chickpea (Cicer arietinum L.)

    Get PDF
    Pusa 391, a mega desi chickpea variety with medium maturity duration is extensively cultivated in the Central Zone of India. Of late, this variety has become susceptible to Fusarium wilt (FW), which has drastic impact on its yield. Presence of variability in the wilt causing pathogen, Fusarium oxysporum f.sp. ciceri (foc) across geographical locations necessitates the role of pyramiding for FW resistance for different races (foc 1,2,3,4 and 5). Subsequently, the introgression lines developed in Pusa 391 genetic background were subjected to foreground selection using three SSR markers (GA16, TA 27 and TA 96) while 48 SSR markers uniformly distributed on all chromosomes, were used for background selection to observe the recovery of recurrent parent genome (RPG). BC1F1 lines with 75–85% RPG recovery were used to generate BC2F1. The plants that showed more than 90% RPG recovery in BC2F1 were used for generating BC3F1. The plants that showed more than 96% RPG recovery were selected and selfed to generate BC3F3. Multi-location evaluation of advanced introgression lines (BC2F3) in six locations for grain yield (kg/ha), days to fifty percent flowering, days to maturity, 100 seed weight and disease incidence was done. In case of disease incidence, the genotype IL1 (BGM 20211) was highly resistant to FW in Junagarh, Indore, New Delhi, Badnapur and moderately resistant at Sehore and Nandyal. GGE biplot analysis revealed that IL1(BGM20211) was the most stable genotype at Junagadh, Sehore and Nandyal. GGE biplot analysis revealed that IL1(BGM 20211) and IL4(BGM 20212) were the top performers in yield and highly stable across six environments and were nominated for Advanced Varietal Trials (AVT) of AICRP (All India Coordinated Research Project on Chickpea) in 2018–19. BGM20211 and BGM 20212 recorded 29 and 28.5% average yield gain over the recurrent parent Pusa 391, in the AVT-1 and AVT-2 over five environments. Thus, BGM20211 was identified for release and notified as Pusa Manav/Pusa Chickpea 20211 for Madhya Pradesh, Gujarat and Maharashtra, Southern Rajasthan, Bundhelkhand region of Uttar Pradesh states by the Central Sub-Committees on Crop Standards, Notification and Release of Varieties of Agricultural Crops, Ministry of Agriculture and Farmers Welfare, Government of India, for commercial cultivation in India (Gazette notification number S.O.500 (E) dt. 29-1-2021).Such pyramided lines give resilience to multiple races of fusarium wilt with added yield advantage

    Characterization of ‘QTL-hotspot’ introgression lines reveals physiological mechanisms and candidate genes associated with drought adaptation in chickpea

    Get PDF
    ‘QTL-hotspot’ is a genomic region on linkage group 04 (CaLG04) in chickpea (Cicer arietinum) that harbours major-effect quantitative trait loci (QTLs) for multiple drought-adaptive traits, and it therefore represents a promising target for improving drought adaptation. To investigate the mechanisms underpinning the positive effects of ‘QTL-hotspot’ on seed yield under drought, we introgressed this region from the ICC 4958 genotype into five elite chickpea cultivars. The resulting introgression lines (ILs) and their parents were evaluated in multi-location field trials and semi-controlled conditions. The results showed that the ‘QTL-hotspot’ region improved seed yield under rainfed conditions by increasing seed weight, reducing the time to flowering, regulating traits related to canopy growth and early vigour, and enhancing transpiration efficiency. Whole-genome sequencing data analysis of the ILs and parents revealed four genes underlying the ‘QTL-hotspot’ region associated with drought adaptation. We validated diagnostic KASP markers closely linked to these genes using the ILs and their parents for future deployment in chickpea breeding programs. The CaTIFY4b-H2 haplotype of a potential candidate gene CaTIFY4b was identified as the superior haplotype for 100-seed weight. The candidate genes and superior haplotypes identified in this study have the potential to serve as direct targets for genetic manipulation and selection for chickpea improvement

    A measurement of the tau mass and the first CPT test with tau leptons

    Full text link
    We measure the mass of the tau lepton to be 1775.1+-1.6(stat)+-1.0(syst.) MeV using tau pairs from Z0 decays. To test CPT invariance we compare the masses of the positively and negatively charged tau leptons. The relative mass difference is found to be smaller than 3.0 10^-3 at the 90% confidence level.Comment: 10 pages, 4 figures, Submitted to Phys. Letts.

    First Measurement of Z/gamma* Production in Compton Scattering of Quasi-real Photons

    Full text link
    We report the first observation of Z/gamma* production in Compton scattering of quasi-real photons. This is a subprocess of the reaction e+e- to e+e-Z/gamma*, where one of the final state electrons is undetected. Approximately 55 pb-1 of data collected in the year 1997 at an e+e- centre-of-mass energy of 183 GeV with the OPAL detector at LEP have been analysed. The Z/gamma* from Compton scattering has been detected in the hadronic decay channel. Within well defined kinematic bounds, we measure the product of cross-section and Z/gamma* branching ratio to hadrons to be (0.9+-0.3+-0.1) pb for events with a hadronic mass larger than 60 GeV, dominated by (e)eZ production. In the hadronic mass region between 5 GeV and 60 GeV, dominated by (e)egamma* production, this product is found to be (4.1+-1.6+-0.6) pb. Our results agree with the predictions of two Monte Carlo event generators, grc4f and PYTHIA.Comment: 18 pages, LaTeX, 5 eps figures included, submitted to Physics Letters

    Measurement of the B0 Lifetime and Oscillation Frequency using B0->D*+l-v decays

    Full text link
    The lifetime and oscillation frequency of the B0 meson has been measured using B0->D*+l-v decays recorded on the Z0 peak with the OPAL detector at LEP. The D*+ -> D0pi+ decays were reconstructed using an inclusive technique and the production flavour of the B0 mesons was determined using a combination of tags from the rest of the event. The results t_B0 = 1.541 +- 0.028 +- 0.023 ps, Dm_d = 0.497 +- 0.024 +- 0.025 ps-1 were obtained, where in each case the first error is statistical and the second systematic.Comment: 17 pages, 4 figures, submitted to Phys. Lett.

    Search for Higgs Bosons in e+e- Collisions at 183 GeV

    Get PDF
    The data collected by the OPAL experiment at sqrts=183 GeV were used to search for Higgs bosons which are predicted by the Standard Model and various extensions, such as general models with two Higgs field doublets and the Minimal Supersymmetric Standard Model (MSSM). The data correspond to an integrated luminosity of approximately 54pb-1. None of the searches for neutral and charged Higgs bosons have revealed an excess of events beyond the expected background. This negative outcome, in combination with similar results from searches at lower energies, leads to new limits for the Higgs boson masses and other model parameters. In particular, the 95% confidence level lower limit for the mass of the Standard Model Higgs boson is 88.3 GeV. Charged Higgs bosons can be excluded for masses up to 59.5 GeV. In the MSSM, mh > 70.5 GeV and mA > 72.0 GeV are obtained for tan{beta}>1, no and maximal scalar top mixing and soft SUSY-breaking masses of 1 TeV. The range 0.8 < tanb < 1.9 is excluded for minimal scalar top mixing and m{top} < 175 GeV. More general scans of the MSSM parameter space are also considered.Comment: 49 pages. LaTeX, including 33 eps figures, submitted to European Physical Journal
    corecore