12 research outputs found

    Interleukin‐6 initiates muscle‐ and adipose tissue wasting in a novel C57BL/6 model of cancer‐associated cachexia

    Get PDF
    BACKGROUND: Cancer‐associated cachexia (CAC) is a wasting syndrome drastically reducing efficacy of chemotherapy and life expectancy of patients. CAC affects up to 80% of cancer patients, yet the mechanisms underlying the disease are not well understood and no approved disease‐specific medication exists. As a multiorgan disorder, CAC can only be studied on an organismal level. To cover the diverse aetiologies of CAC, researchers rely on the availability of a multifaceted pool of cancer models with varying degrees of cachexia symptoms. So far, no tumour model syngeneic to C57BL/6 mice exists that allows direct comparison between cachexigenic‐ and non‐cachexigenic tumours. METHODS: MCA207 and CHX207 fibrosarcoma cells were intramuscularly implanted into male or female, 10–11‐week‐old C57BL/6J mice. Tumour tissues were subjected to magnetic resonance imaging, immunohistochemical‐, and transcriptomic analysis. Mice were analysed for tumour growth, body weight and ‐composition, food‐ and water intake, locomotor activity, O(2) consumption, CO(2) production, circulating blood cells, metabolites, and tumourkines. Mice were sacrificed with same tumour weights in all groups. Adipose tissues were examined using high‐resolution respirometry, lipolysis measurements in vitro and ex vivo, and radioactive tracer studies in vivo. Gene expression was determined in adipose‐ and muscle tissues by quantitative PCR and Western blotting analyses. Muscles and cultured myotubes were analysed histologically and by immunofluorescence microscopy for myofibre cross sectional area and myofibre diameter, respectively. Interleukin‐6 (Il‐6) was deleted from cancer cells using CRISPR/Cas9 mediated gene editing. RESULTS: CHX207, but not MCA207‐tumour‐bearing mice exhibited major clinical features of CAC, including systemic inflammation, increased plasma IL‐6 concentrations (190 pg/mL, P ≀ 0.0001), increased energy expenditure (+28%, P ≀ 0.01), adipose tissue loss (−47%, P ≀ 0.0001), skeletal muscle wasting (−18%, P ≀ 0.001), and body weight reduction (−13%, P ≀ 0.01) 13 days after cancer cell inoculation. Adipose tissue loss resulted from reduced lipid uptake and ‐synthesis combined with increased lipolysis but was not associated with elevated beta‐adrenergic signalling or adipose tissue browning. Muscle atrophy was evident by reduced myofibre cross sectional area (−21.8%, P ≀ 0.001), increased catabolic‐ and reduced anabolic signalling. Deletion of IL‐6 from CHX207 cancer cells completely protected CHX207(IL6KO)‐tumour‐bearing mice from CAC. CONCLUSIONS: In this study, we present CHX207 fibrosarcoma cells as a novel tool to investigate the mediators and metabolic consequences of CAC in C57BL/6 mice in comparison to non‐cachectic MCA207‐tumour‐bearing mice. IL‐6 represents an essential trigger for CAC development in CHX207‐tumour‐bearing mice

    Lysosomal acid lipase regulates VLDL synthesis and insulin sensitivity in mice

    Get PDF
    AIMS/HYPOTHESIS: Lysosomal acid lipase (LAL) hydrolyses cholesteryl esters and triacylglycerols (TG) within lysosomes to mobilise NEFA and cholesterol. Since LAL-deficient (Lal (-/-) ) mice suffer from progressive loss of adipose tissue and severe accumulation of lipids in hepatic lysosomes, we hypothesised that LAL deficiency triggers alternative energy pathway(s). METHODS: We studied metabolic adaptations in Lal (-/-) mice. RESULTS: Despite loss of adipose tissue, Lal (-/-) mice show enhanced glucose clearance during insulin and glucose tolerance tests and have increased uptake of [(3)H]2-deoxy-D-glucose into skeletal muscle compared with wild-type mice. In agreement, fasted Lal (-/-) mice exhibit reduced glucose and glycogen levels in skeletal muscle. We observed 84% decreased plasma leptin levels and significantly reduced hepatic ATP, glucose, glycogen and glutamine concentrations in fed Lal (-/-) mice. Markedly reduced hepatic acyl-CoA concentrations decrease the expression of peroxisome proliferator-activated receptor α (PPARα) target genes. However, treatment of Lal (-/-) mice with the PPARα agonist fenofibrate further decreased plasma TG (and hepatic glucose and glycogen) concentrations in Lal (-/-) mice. Depletion of hepatic nuclear factor 4α and forkhead box protein a2 in fasted Lal (-/-) mice might be responsible for reduced expression of microsomal TG transfer protein, defective VLDL synthesis and drastically reduced plasma TG levels. CONCLUSIONS/INTERPRETATION: Our findings indicate that neither activation nor inactivation of PPARα per se but rather the availability of hepatic acyl-CoA concentrations regulates VLDL synthesis and subsequent metabolic adaptations in Lal (-/-) mice. We conclude that decreased plasma VLDL production enhances glucose uptake into skeletal muscle to compensate for the lack of energy supply

    COMPETITIVE HYDROGENATIONS. II

    No full text

    Simulation von Strukturdynamik und GerÀuschabstrahlung von Abgasanlagen

    No full text

    ASTERICS – advanced simulation models and accelerated testing for the development of electric vehicles

    Get PDF
    AbstractThe development of Electric Vehicles (EV's), either fully electric (BEV
battery electric vehicle) or different hybrids (like HEV
 hybrid electric vehicles or PHEV
plug-in hybrids), is an undeniable prerequisite to fulfill the worldwide emission targets for transport even within the next 10-15 years. The conventional development methods and tools on the other hand, are so far only optimized for the development of vehicles with ICE engines only and not well designed to develop EV's at all. To close this gap, the research in ASTERICS is focused on simulation and testing methods as well as tools that enable the optimal, cost efficient and safe development of EV's. Realistic driving cycles for e-vehicles, models for e-components, test procedures, test equipment and tools as well as system simulation and evaluation have been investigated in, which lasted 3 years (Oct. 2012 – Sept. 2015) and involved 10 partners (OEM: CRV, Volvo; Supplier: AVL, Siemens SAS/SISW, Thien eDrives, GustavKlein; Research: see above)

    High Keratin 8/18 Ratio Predicts Aggressive Hepatocellular Cancer Phenotype

    No full text
    BACKGROUND amp; AIMS: Steatohepatitis (SH) and SH-associated hepatocellular carcinoma (HCC) are of considerable clinical significance. SH is morphologically characterized by steatosis, liver cell ballooning, cytoplasmic aggregates termedMallory-Denk bodies (MDBs), inflammation, and fibrosis at late stage. Disturbance of the keratin cytoskeleton and aggregation of keratins (KRTs) are essential for MDB formation. METHODS: Weanalyzed livers of aged Krt18(-/-) mice that spontaneously developed in the majority of cases SH-associated HCC independent of sex. Interestingly, the hepatic lipid profile in Krt18(-/-) mice, which accumulate KRT8, closely resembles human SH lipid profiles and shows that the excess of KRT8 over KRT18 determines the likelihood to develop SH-associated HCC linked with enhanced lipogenesis. RESULTS: Our analysis of the genetic profile of Krt18(-/-) mice with 26 human hepatoma cell lines and with data sets of amp;gt;300 patients with HCC, where Krt18(-/-) gene signatures matched human HCC. Interestingly, a high KRT8/18 ratio is associated with an aggressive HCC phenotype. CONCLUSIONS: We can prove that intermediate filaments and their binding partners are tightly linked to hepatic lipid metabolism and to hepatocarcinogenesis. We suggest KRT8/18 ratio as a novel HCC biomarker for HCC.Funding Agencies|Kurt und Senta Herrmann Stiftung; Austrian Genome Programme GEN-AU; DFG [MA1316-15, MA1316-17, MA1316-19, MA1316-21, INST 268/230-1]; German Research Foundation [STR 1095/4-2]; Else Kroner Exzellenzstipendium; Innovative Medicines Initiative Joint Undertaking from the European Unions Seventh Framework Programme (FP7/2007-2013) [115234]; EFPIA companies</p
    corecore