9 research outputs found

    Microbial diversity of a disused copper mine site (Parys Mountain, UK), dominated by intensive eukaryotic filamentous growth

    Get PDF
    The Parys Mountain copper mine (Wales, UK) contains a wide range of discrete environmental microniches with various physicochemical conditions that shape microbial community composition. Our aim was to assess the microbial community in the sediments and overlying water column in an acidic mine drainage (AMD) site containing abundant filamentous biogenic growth via application of a combination of chemical analysis and taxonomic profiling using 16S rRNA gene amplicon sequencing. Our results were then compared to previously studied sites at Parys Mt. Overall, the sediment microbiome showed a dominance of bacteria over archaea, particularly those belonging to Proteobacteria (genera Acidiphilium and Acidisphaera), Acidobacteriota (subgroup 1), Chloroflexota (AD3 cluster), Nitrospirota (Leptospirillum) and the uncultured Planctomycetota/CPIa-3 termite group. Archaea were only present in the sediment in small quantities, being represented by the Terrestrial Miscellaneous Euryarchaeota Group (TMEG), Thermoplasmatales and Ca. Micrarchaeota (Ca. Micracaldota). Bacteria, mostly of the genera Acidiphilium and Leptospirillum, also dominated within the filamentous streamers while archaea were largely absent. This study found pH and dissolved solutes to be the most important parameters correlating with relative proportions of bacteria to archaea in an AMD environment and revealed the abundance patterns of native acidophilic prokaryotes inhabiting Parys Mt sites and their niche specificities

    Effects of Ultrasound and Green Synthesis ZnO Nanoparticles on Biogas Production from Olive Pomace

    Get PDF
    Abstract Agro-biomass residues can play a crucial role in promoting the fossil-fuel replacement in agro-food farms. Apulia, a region in Southern Italy, concentrates 22% of farms and 57% of total national olive and olive oil production, resulting the leader producer of the Country. So that, a high quantity of biomass (olive pomace) can be recovered from the milling process. This study investigates the biogas production that occurs during the anaerobic digestion of olive pomace by means of an ultrasound pre-treatment or by means of green synthesis of ZnO Nanoparticles mixed with olive pomace, in order to facilitate its digestion or co-digestion. Measurement of dry matter and biogas produced volume during the anaerobic process were investigated starting from 3-phase and 2-phase olive pomace by means of high specific energy and low frequency ultrasound values. The results highlight a promising influence of ultrasound pre-treatment useful at increasing the biogas yield of olive pomace

    Diversity of hydrolases from hydrothermal vent sediments of the Levante Bay, Vulcano Island (Aeolian archipelago) identified by activity-based metagenomics and biochemical characterization of new esterases and an arabinopyranosidase

    Get PDF
    A metagenomic fosmid expression library established from environmental DNA (eDNA) from the shallow hot vent sediment sample collected from the Levante Bay, Vulcano Island (Aeolian archipelago) was established in Escherichia coli. Using activity-based screening assays, we have assessed 9600 fosmid clones corresponding to approximately 350 Mbp of the cloned eDNA, for the lipases/esterases/lactamases, haloalkane and haloacid dehalogenases, and glycoside hydrolases. Thirty-four positive fosmid clones were selected from the total of 120 positive hits and sequenced to yield ca. 1360 kbp of high-quality assemblies. Fosmid inserts were attributed to the members of ten bacterial phyla, including Proteobacteria, Bacteroidetes, Acidobateria, Firmicutes, Verrucomicrobia, Chloroflexi, Spirochaetes, Thermotogae, Armatimonadetes, and Planctomycetes. Of ca. 200 proteins with high biotechnological potential identified therein, we have characterized in detail three distinct α/β-hydrolases (LIPESV12_9, LIPESV12_24, LIPESV12_26) and one new α-arabinopyranosidase (GLV12_5). All LIPESV12 enzymes revealed distinct substrate specificities tested against 43 structurally diverse esters and 4 p-nitrophenol carboxyl esters. Of 16 different glycosides tested, the GLV12_5 hydrolysed only p-nitrophenol-α-(L)-arabinopyranose with a high specific activity of about 2.7 kU/mg protein. Most of the α/β-hydrolases were thermophilic and revealed a high tolerance to, and high activities in the presence of, numerous heavy metal ions. Among them, the LIPESV12_24 was the best temperature-adapted, retaining its activity after 40 min of incubation at 90 °C. Furthermore, enzymes were active in organic solvents (e.g., >30% methanol). Both LIPESV12_24 and LIPESV12_26 had the GXSXG pentapeptides and the catalytic triads Ser-Asp-His typical to the representatives of carboxylesterases of EC 3.1.1.1

    Thermophilic Carboxylesterases from Hydrothermal Vents of the Volcanic Island of Ischia Active on Synthetic and Biobased Polymers and Mycotoxins

    Get PDF
    Hydrothermal vents are geographically widespread and host microorganisms with robust enzymes useful in various industrial applications. We examined microbial communities and carboxylesterases of two terrestrial hydrothermal vents of the volcanic island of Ischia (Italy) predominantly composed of Firmicutes, Proteobacteria, and Bacteroidota. High-temperature enrichment cultures with the polyester plastics polyhydroxybutyrate and polylactic acid (PLA) resulted in an increase of Thermus and Geobacillus species and to some extent Fontimonas and Schleiferia species. The screening at 37 to 70°C of metagenomic fosmid libraries from above enrichment cultures identified three hydrolases (IS10, IS11, and IS12), all derived from yet-uncultured Chloroflexota and showing low sequence identity (33 to 56%) to characterized enzymes. Enzymes expressed in Escherichia coli exhibited maximal esterase activity at 70 to 90°C, with IS11 showing the highest thermostability (90% activity after 20-min incubation at 80°C). IS10 and IS12 were highly substrate promiscuous and hydrolyzed all 51 monoester substrates tested. Enzymes were active with PLA, polyethylene terephthalate model substrate, and mycotoxin T-2 (IS12). IS10 and IS12 had a classical a/b-hydrolase core domain with a serine hydrolase catalytic triad (Ser155, His280, and Asp250) in their hydrophobic active sites. The crystal structure of IS11 resolved at 2.92 Å revealed the presence of a N-terminal b-lactamase-like domain and C-terminal lipocalin domain. The catalytic cleft of IS11 included catalytic Ser68, Lys71, Tyr160, and Asn162, whereas the lipocalin domain enclosed the catalytic cleft like a lid and contributed to substrate binding. Our study identified novel thermotolerant carboxylesterases with a broad substrate range, including polyesters and mycotoxins, for potential applications in biotechnology. Copyright © 2023 Distaso et al.This study was conducted under the auspices of the FuturEnzyme Project funded by the European Union’s Horizon 2020 Research and Innovation Program under grant agreement 101000327. M.F. and F.J.P. also acknowledge grants PID2020-112758RB-I00 (M.F.), PDC2021- 121534-I00 (M.F.), TED2021-130544B-I00 (M.F.), and PID2019-105838RB-C31 (F.J.P.) from MCIN/AEI/10.13039/501100011033 and the European Union (“NextGenerationEU/PRTR”). M.A.D., T.N.C., R.B., A.N.K., O.V.G., A.F.Y., and P.N.G. are thankful for support fromthe European Regional Development Fund (ERDF) through the Welsh Government to the Centre for Environmental Biotechnology, project number 81280. P.N.G. and A.F.Y. acknowledge the Natural Environment Research Council UK-funded Plastic Vectors project NE/S004548/1 and the Sêr Cymru program partly funded by the ERDF through the Welsh Government for support of the project BioPOL4Life.We are indebted to Connie Tulloch and GwionWilliams for their technical support.Supporting InformationPeer reviewe

    Field application of pure polyethylene microplastic has no significant short-term effect on soil biological quality and function

    Get PDF
    Plastics are now widespread in the natural environment. Due to their size, microplastics (MPs; defined as particles 0.05) on the soil bacterial community diversity (as measured by amplicon sequencing of bacterial 16S rRNA gene), the size and structure of the PLFA-derived soil microbial community, or the abundance and biomass of earthworms. In addition, metabolomic profiling revealed no dose-dependent effect of MP loading on soil biogenic amine concentrations. The growth and yield of wheat plants (Triticum aestivum L., cv. Mulika) were also unaffected by MP dose, even at extremely high (≥1000 kg ha−1) loading levels. Nitrogen (N) cycling gene abundance before and after N fertiliser application on the MP loaded experimental plots showed relatively little change, although further experimentation is suggested, with similar trends evident for soil nitrous oxide (N2O) flux. Overall, we illustrate that MPs themselves may not pose a significant problem in the short term (days to months), due to their recalcitrant nature. We also emphasise that most MPs in the environment are not pure or uncontaminated, containing additives (e.g. plasticisers, pigments and stabilisers) that are generally not chemically bound to the plastic polymer and may be prone to leaching into the soil matrix. Understanding the effect of additives on soil biology as well as the longer-term (years to decades) impact of MPs on soil biological and ecological health in the field environment is recommended

    Monitoring SARS-CoV-2 in municipal wastewater to evaluate the success of lockdown measures for controlling COVID-19 in the UK

    Get PDF
    SARS-CoV-2 and the resulting COVID-19 pandemic represents one of the greatest recent threats to human health, wellbeing and economic growth. Wastewater-based epidemiology (WBE) of human viruses can be a useful tool for population-scale monitoring of SARS-CoV-2 prevalence and epidemiology to help prevent further spread of the disease, particularly within urban centres. Here, we present a longitudinal analysis (March-July 2020) of SARS-CoV-2 RNA prevalence in sewage across six major urban centres in the UK (total population equivalent 3 million) by q(RT-)PCR and viral genome sequencing. Our results demonstrate that levels of SARS-CoV-2 RNA generally correlated with the abundance of clinical cases recorded within the community in large urban centres, with a marked decline in SARS-CoV-2 RNA abundance following the implementation of lockdown measures. The strength of this association was weaker in areas with lower confirmed COVID-19 case numbers. Further, sequence analysis of SARS-CoV-2 from wastewater suggested that multiple genetically distinct clusters were co-circulating in the local populations covered by our sample sites, and that the genetic variants observed in wastewater reflected similar SNPs observed in contemporaneous samples from cases tested in clinical diagnostic laboratories. We demonstrate how WBE can be used for both community-level detection and tracking of SARS-CoV-2 and other virus' prevalence, and can inform public health policy decisions. Although, greater understanding of the factors that affect SARS-CoV-2 RNA concentration in wastewater are needed for the full integration of WBE data into outbreak surveillance. In conclusion, our results lend support to the use of routine WBE for monitoring of SARS-CoV-2 and other human pathogenic viruses circulating in the population and assessment of the effectiveness of disease control measures

    Phylum XIV. Bacteroidetes phyl. nov.

    No full text
    corecore