90 research outputs found

    Adjuvant radiotherapy after radical cystectomy for patients with muscle invasive bladder cancer : a phase II trial

    Get PDF
    Background: Neo-adjuvant chemotherapy followed by radical cystectomy with extended pelvic lymph node dissection is considered to be the treatment of choice for patients with muscle invasive bladder cancer (MIBC). Despite this aggressive treatment the outcome is poor and ultimately, 30% of the patients with >= pT3 tumors develop a pelvic recurrence. We hypothesize that postoperative adjuvant external beam radiotherapy (EBRT) might prevent local and lymph node recurrence and improve disease free-and overall survival as loco-regional recurrence is linked to the development of distant metastasis. Methods: We plan to perform a multicentric prospective phase two study including 76 patients. Eligible patients are patients with MIBC, treated with radical cystectomy and presenting with >= 1 of the following characteristics: - Pathological (p) T3 stage + presence of lymphovascular invasion on pathological examination - pT4 stage - < 10 lymph nodes removed - positive lymph nodes - positive surgical margins Patients will have a F-18-FDG PET-CT to rule out the presence of distant metastasis prior to EBRT. A median dose of 50 Gy in 25 fractions is prescribed to the pelvic lymph node regions with inclusion of the operative bladder bed in case of a positive surgical margin. Patients with suspected lymph nodes on PET-CT can still be included in the trial, but a simultaneous integrated boost to 74Gy to the positive lymph nodes will be delivered. Blood and urine samples will be collected on day-1 and last day of EBRT for evaluation of biomarkers. The primary endpoint is evaluation of acute >= Grade 3 intestinal or grade 4 urinary toxicity, in case of a neo-bladder reconstruction, within 12 weeks after EBRT. Secondary endpoints are: assessment of QOL, late RTOG toxicity, local control, disease free survival and overall survival. Biomarkers in urine and blood will be correlated with secondary survival endpoints. Discussion: This is a prospective phase 2 trial re-assessing the feasibility of adjuvant radiotherapy in high-risk MIBC

    A phase III randomized-controlled, single-blind trial to improve quality of life with stereotactic body radiotherapy for patients with painful bone metastases (ROBOMET)

    Get PDF
    Background Bone metastases represent an important source of morbidity in cancer patients, mostly due to severe pain. Radiotherapy is an established symptomatic treatment for painful bone metastases, however, when conventional techniques are used, the effectiveness is moderate. Stereotactic body radiotherapy (SBRT), delivering very high doses in a limited number of fractions in a highly conformal manner, could potentially be more effective and less toxic. Methods This is a phase III, randomized-controlled, single-blind, multicenter study evaluating the response rate of antalgic radiotherapy for painful bone metastases and the acute toxicity associated with this treatment. A total of 126 patients will be randomly assigned to receive either the standard schedule of a single fraction of 8.0 Gy delivered through three-dimensional conformal radiotherapy or a single fraction of 20.0 Gy delivered through SBRT. Primary endpoint is pain response at the treated site at 1 month after radiotherapy. Secondary endpoints are pain flare at 24-48-72 h after radiotherapy, duration of pain response, re-irradiation need, acute toxicity, late toxicity, quality of life and subsequent serious skeletal events. In a supplementary analysis, patient-compliance for a paper-and-pencil questionnaire will be compared with an electronic mode. Discussion If a dose-escalated approach within the context of single fraction stereotactic body radiotherapy could improve the pain response to radiotherapy and minimize acute toxicity, this would have an immediate impact on the quality of life for a large number of patients with advanced cancer. Potential disadvantages of this technique include increased pain flare or a higher incidence of radiation-induced fractures. Trial registration: The Ethics committee of the GZA Hospitals (B099201732915) approved this study on September 4th 2018. Trial registered on Clinicaltrials. gov (NCT03831243) on February 5th 2019

    Machine learning-based detection of aberrant deep learning segmentations of target and organs at risk for prostate radiotherapy using a secondary segmentation algorithm

    Get PDF
    Objective. The output of a deep learning (DL) auto-segmentation application should be reviewed, corrected if needed and approved before being used clinically. This verification procedure is labour-intensive, time-consuming and user-dependent, which potentially leads to significant errors with impact on the overall treatment quality. Additionally, when the time needed to correct auto-segmentations approaches the time to delineate target and organs at risk from scratch, the usability of the DL model can be questioned. Therefore, an automated quality assurance framework was developed with the aim to detect in advance aberrant auto-segmentations. Approach. Five organs (prostate, bladder, anorectum, femoral head left and right) were auto-delineated on CT acquisitions for 48 prostate patients by an in-house trained primary DL model. An experienced radiation oncologist assessed the correctness of the model output and categorised the auto-segmentations into two classes whether minor or major adaptations were needed. Subsequently, an independent, secondary DL model was implemented to delineate the same structures as the primary model. Quantitative comparison metrics were calculated using both models' segmentations and used as input features for a machine learning classification model to predict the output quality of the primary model. Main results. For every organ, the approach of independent validation by the secondary model was able to detect primary auto-segmentations that needed major adaptation with high sensitivity (recall = 1) based on the calculated quantitative metrics. The surface DSC and APL were found to be the most indicated parameters in comparison to standard quantitative metrics for the time needed to adapt auto-segmentations. Significance. This proposed method includes a proof of concept for the use of an independent DL segmentation model in combination with a ML classifier to improve time saving during QA of auto-segmentations. The integration of such system into current automatic segmentation pipelines can increase the efficiency of the radiotherapy contouring workflow

    PRIMMO study protocol : a phase II study combining PD-1 blockade, radiation and immunomodulation to tackle cervical and uterine cancer

    Get PDF
    Background: Immunotherapeutic approaches have revolutionized oncological practice but are less evaluated in gynecological malignancies. PD-1/PD-L1 blockade in gynecological cancers showed objective responses in 13-17% of patients. This could be due to immunosuppressive effects exerted by gynecological tumors on the microenvironment and an altered tumor vasculature.In other malignancies, combining checkpoint blockade with radiation delivers benefit that is believed to be due to the abscopal effect. Addition of immune modulation agents has also shown to enhance immune checkpoint blockade efficacy. Therefore we designed a regimen consisting of PD-1 blockade combined with radiation, and different immune/environmental-targeting compounds: repurposed drugs, metronomic chemotherapy and a food supplement.We hypothesize that these will synergistically modulate the tumor microenvironment and induce and sustain an anti-tumor immune response, resulting in tumor regression. Methods: PRIMMO is a multi-center, open-label, non-randomized, 3-cohort phase 2 study with safety run-in in patients with recurrent/refractory cervical carcinoma, endometrial carcinoma or uterine sarcoma.Treatment consists of daily intake of vitamin D, lansoprazole, aspirin, cyclophosphamide and curcumin, starting 2weeks before the first pembrolizumab dose. Pembrolizumab is administered 3-weekly for a total of 6cycles. Radiation (3x8Gy) is given on days 1, 3 and 5 of the first pembrolizumab dose.The safety run-in consists of 6 patients. In total, 18 and 25 evaluable patients for cervical and endometrial carcinoma respectively are foreseen to enroll. No sample size is determined for uterine sarcoma due to its rarity.The primary objective is objective response rate at week 26 according to immune-related response criteria.Secondary objectives include safety, objective response rate at week 26 according to RECIST v1.1, best overall response, progression-free survival, overall survival and quality of life.Exploratory, translational research aims to evaluate immune biomarkers, extracellular vesicles, cell death biomarkers and the gut microbiome. Discussion: In this study, a combination of PD-1 blockade, radiation and immune/environmental-targeting compounds is tested, aiming to tackle the tumor microenvironment and induce anti-tumor immunity. Translational research is performed to discover biomarkers related to the mode of action of the combination. Trial registration: EU Clinical Trials Register: EudraCT 2016-001569-97, registered on 19-6-2017. Clinicaltrials.gov: NCT03192059, registered on 19-6-2017

    Recommendations for radiation therapy in oligometastatic prostate cancer:An ESTRO-ACROP Delphi consensus

    Get PDF
    Background and purpose: Oligometastatic prostate cancer is a new and emerging treatment field with only few prospective randomized studies published so far. Despite the lack of strong level I evidence, metastasis-directed therapies (MDT) are widely used in clinical practice, mainly based on retrospective and small phase 2 studies and with a large difference across centers. Pending results of ongoing prospec-tive randomized trials, there is a clear need for more consistent treatment indications and radiotherapy practices.Material and methods: A European Society for Radiotherapy and Oncology (ESTRO) Guidelines Committee consisting of radiation oncologists' experts in prostate cancer was asked to answer a dedicated question-naire, including 41 questions on the main controversial issues with regard to oligometastatic prostate cancer.Results: The panel achieved consensus on patient selection and routine use of prostate-specific mem-brane antigen positron emission tomography (PSMA PET) imaging as preferred staging and restaging imaging. MDT strategies are recommended in the de novo oligometastatic, oligorecurrent and oligopro-gressive disease setting for nodal, bone and visceral metastases. Radiation therapy doses, volumes and techniques were discussed and commented.Conclusion: These recommendations have the purpose of providing standardization and consensus to optimize the radiotherapy treatment of oligometastatic prostate cancer until mature results of random-ized trials are available.AT would like to acknowledge the support of Cancer Research UK (C33589/A28284 and C7224/A28724) . This project represents independent research supported by the National Institute for Health research (NIHR) Biomedical Research Centre at The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research, London. The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care

    Oligorecurrent nodal prostate cancer: radiotherapy quality assurance of the randomized PEACE V-STORM phase II trial.

    Get PDF
    PURPOSE Aim of this study is to report the results of the radiotherapy quality assurance program of the PEACE V-STORM randomized phase II trial for pelvic nodal oligorecurrent prostate cancer (PCa). MATERIAL AND METHODS A benchmark case (BC) consisting of a postoperative case with 2 nodal recurrences was used for both stereotactic body radiotherapy (SBRT, 30 Gy/3 fx) and whole pelvic radiotherapy (WPRT, 45 Gy/25 fx + SIB boost to 65 Gy). RESULTS BC of 24 centers were analyzed. The overall grading for delineation variation of the 1st BC was rated as 'UV' (Unacceptable Variation) or 'AV' (Acceptable Variation) for 1 and 7 centers for SBRT (33%), and 3 and 8 centers for WPRT (46%), respectively. An inadequate upper limit of the WPRT CTV (n=2), a missing delineation of the prostate bed (n=1), and a missing nodal target volume (n=1 for SBRT and WPRT) constituted the observed 'UV'. With the 2nd BC (n=11), the overall delineation review showed 2 and 8 'AV' for SBRT and WPRT, respectively, with no 'UV'. For the plan review of the 2nd BC, all treatment plans were per protocol for WPRT. SBRT plans showed variability in dose normalization (Median D90% = 30.1 Gy, range 22.9-33.2Gy and 30.6 Gy, range 26.8-34.2Gy for nodes 1 and 2 respectively). CONCLUSIONS Up to 46% of protocol deviations were observed in delineation of WPRT for nodal oligorecurrent PCa, while dosimetric results of SBRT showed the greatest disparities between centers. Repeated BC resulted in an improved adherence to the protocol, translating in an overall acceptable contouring and planning compliance rate among participating centers

    TP53 outperforms other androgen receptor biomarkers to predict abiraterone or enzalutamide outcome in metastatic castration-resistant prostate cancer

    Get PDF
    Purpose: To infer the prognostic value of simultaneous androgen receptor (AR) and TP53 profiling in liquid biopsies from patients with metastatic castration-resistant prostate cancer (mCRPC) starting a new line of AR signaling inhibitors (ARSi). Experimental Design: Between March 2014 and April 2017, we recruited patients with mCRPC (n = 168) prior to ARSi in a cohort study encompassing 10 European centers. Blood samples were collected for comprehensive profiling of Cell Search-enriched circulating tumor cells (CTC) and circulating tumor DNA (ctDNA). Targeted CTC RNA sequencing (RNA-seq) allowed the detection of eight AR splice variants (ARV). Low-pass whole-genome and targeted gene-body sequencing of AR and TP53 was applied to identify amplifications, loss of heterozygosity, mutations, and structural rearrangements in ctDNA. Clinical or radiologic progression-free survival (PFS) was estimated by Kaplan-Meier analysis, and independent associations were determined using multivariable Cox regression models. Results: Overall, no single AR perturbation remained associated with adverse prognosis after multivariable analysis. Instead, tumor burden estimates (CTC counts, ctDNA fraction, and visceral metastases) were significantly associated with PFS. TP53 inactivation harbored independent prognostic value [HR 1.88; 95% confidence interval (CI), 1.18-3.00; P = 0.008], and outperformed ARV expression and detection of genomic AR alterations. Using Cox coefficient analysis of clinical parameters and TP53 status, we identified three prognostic groups with differing PFS estimates (median, 14.7 vs. 7.51 vs. 2.62 months; P < 0.0001), which was validated in an independent mCRPC cohort (n = 202) starting first-line ARSi (median, 14.3 vs. 6.39 vs. 2.23 months; P < 0.0001). Conclusions: In an all-comer cohort, tumor burden estimates and TP53 outperform any AR perturbation to infer prognosis. See related commentary by Rebello et al., p. 169

    Cell-free DNA profiling of metastatic prostate cancer reveals microsatellite instability, structural rearrangements and clonal hematopoiesis.

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.BACKGROUND: There are multiple existing and emerging therapeutic avenues for metastatic prostate cancer, with a common denominator, which is the need for predictive biomarkers. Circulating tumor DNA (ctDNA) has the potential to cost-efficiently accelerate precision medicine trials to improve clinical efficacy and diminish costs and toxicity. However, comprehensive ctDNA profiling in metastatic prostate cancer to date has been limited. METHODS: A combination of targeted and low-pass whole genome sequencing was performed on plasma cell-free DNA and matched white blood cell germline DNA in 364 blood samples from 217 metastatic prostate cancer patients. RESULTS: ctDNA was detected in 85.9% of baseline samples, correlated to line of therapy and was mirrored by circulating tumor cell enumeration of synchronous blood samples. Comprehensive profiling of the androgen receptor (AR) revealed a continuous increase in the fraction of patients with intra-AR structural variation, from 15.4% during first-line metastatic castration-resistant prostate cancer therapy to 45.2% in fourth line, indicating a continuous evolution of AR during the course of the disease. Patients displayed frequent alterations in DNA repair deficiency genes (18.0%). Additionally, the microsatellite instability phenotype was identified in 3.81% of eligible samples (≥ 0.1 ctDNA fraction). Sequencing of non-repetitive intronic and exonic regions of PTEN, RB1, and TP53 detected biallelic inactivation in 47.5%, 20.3%, and 44.1% of samples with ≥ 0.2 ctDNA fraction, respectively. Only one patient carried a clonal high-impact variant without a detectable second hit. Intronic high-impact structural variation was twice as common as exonic mutations in PTEN and RB1. Finally, 14.6% of patients presented false positive variants due to clonal hematopoiesis, commonly ignored in commercially available assays. CONCLUSIONS: ctDNA profiles appear to mirror the genomic landscape of metastatic prostate cancer tissue and may cost-efficiently provide somatic information in clinical trials designed to identify predictive biomarkers. However, intronic sequencing of the interrogated tumor suppressors challenges the ubiquitous focus on coding regions and is vital, together with profiling of synchronous white blood cells, to minimize erroneous assignments which in turn may confound results and impede true associations in clinical trials.The Belgian Foundation Against Cancer (grant number C/2014/227); Kom op tegen Kanker (Stand up to Cancer), the Flemish Cancer Society (grant number 00000000116000000206); Royal College of Surgeons/Cancer Research UK (C19198/A1533); The Cancer Research Funds of Radiumhemmet, through the PCM program at KI (grant number 163012); The Erling-Persson family foundation (grant number 4-2689-2016); the Swedish Research Council (grant number K2010-70X-20430-04-3), and the Swedish Cancer Foundation (grant number 09-0677)

    Optimization of intensity-modulated radiotherapy for head and neck cancer

    No full text
    status: publishe
    • …
    corecore