9 research outputs found

    Trend in the Co-Occurrence of Extreme Daily Rainfall in West Africa Since 1950

    No full text
    International audienceWe propose in this paper a statistical framework to study the evolution of the co‐occurrence of extreme daily rainfall in West Africa since 1950. We consider two regions subject to contrasted rainfall regimes: Senegal and the central Sahel. We study the likelihood of the 3% largest daily rainfall (considering all days) in each region to occur simultaneously and, in a 20 year moving window approach, how this likelihood has evolved with time. Our method uses an anisotropic max‐stable process allowing us to properly represent the co‐occurrence of daily extremes and including the possibility of a preferred direction of co‐occurrence. In Senegal, a change is found in the 1980s, with preferred co‐occurrence along the E‐50‐N direction (i.e., along azimuth 50°) before the 1980s and weaker isotropic co‐occurrence afterward. In central Sahel, a change is also found in the 1980s but surprisingly with contrasting results. Anisotropy along the E‐W direction is found over the whole period, with greater extension after the 1980s. The paper discusses how the co‐occurrence of extremes can provide a qualitative indicator on change in size and propagation of the strongest storms. This calls for further research to identify the atmospheric processes responsible for such contrasted changes in storm properties

    Formation and Transport of a Saharan Dust Plume in Early Summer

    No full text
    This research studies the capability of the Weather Research and Forecasting model coupled with the Chemistry/Aerosol module (WRF-Chem) with and without parametrization to reproduce a dust storm, which was held on 27th June 2018 over Sahara region. The authors use satellite observations and ground-based measurements to evaluate the WRF-Chem simulations. The sensitivities of WRF-Chem Model are tested on the replication of haboob features with a tuned GOCART aerosol module. Comparisons of simulations with satellite and ground-based observations show that WRF-Chem is able to reproduce the Aerosol Optical Depth (AOD) distribution and associated changes of haboob in the meteorological fields with temperature drops of about 9 °C and wind gust 20 m·s–1. The WRF-Chem Convection-permitting model (CPM) shows strong 10-meter winds induced a large dust emission along the leading edge of a convective cold pool (LECCP). The CPM indicates heavy dust transported over the West African coast (16°W-10°W; 6°N-21°N) which has a potential for long-distance travel on 27th June between 1100 UTC and 1500 UTC. The daily precipitation is improved in the CPM with a spatial distribution similar to the GPM-IMERG precipitation and maximum rainfall located at the right place. As well as raising a large amount of dust, the haboob caused considerable damage along its route

    Intensity-duration-frequency (IDF) rainfall curves in Senegal

    No full text
    International audienceUrbanization resulting from sharply increasing demographic pressure and infrastructure development has made the populations of many tropical areas more vulnerable to extreme rainfall hazards. Characterizing extreme rainfall distribution in a coherent way in space and time is thus becoming an overarching need that requires using appropriate models of intensity-duration-frequency (IDF) curves. Using a 14 series of 5 min rainfall records collected in Senegal, a comparison of two generalized extreme value (GEV) and scaling models is carried out, resulting in the selection of the more parsimonious one (four parameters), as the recommended model for use. A bootstrap approach is proposed to compute the uncertainty associated with the estimation of these four parameters and of the related rainfall return levels for durations ranging from 1 to 24 h. This study confirms previous works showing that simple scaling holds for characterizing the temporal scaling of extreme rainfall in tropical regions such as sub-Saharan Africa. It further provides confidence intervals for the parameter estimates and shows that the uncertainty linked to the estimation of the GEV parameters is 3 to 4 times larger than the uncertainty linked to the inference of the scaling parameter. From this model, maps of IDF parameters over Senegal are produced, providing a spatial vision of their organization over the country, with a north to south gradient for the location and scale parameters of the GEV. An influence of the distance from the ocean was found for the scaling parameter. It is acknowledged in conclusion that climate change renders the inference of IDF curves sensitive to increasing non-stationarity effects, which requires warning end-users that such tools should be used with care and discernment
    corecore