36 research outputs found

    EMT Factors and Metabolic Pathways in Cancer.

    Get PDF
    The epithelial-mesenchymal transition (EMT) represents a biological program during which epithelial cells lose their cell identity and acquire a mesenchymal phenotype. EMT is normally observed during organismal development, wound healing and tissue fibrosis. However, this process can be hijacked by cancer cells and is often associated with resistance to apoptosis, acquisition of tissue invasiveness, cancer stem cell characteristics, and cancer treatment resistance. It is becoming evident that EMT is a complex, multifactorial spectrum, often involving episodic, transient or partial events. Multiple factors have been causally implicated in EMT including transcription factors (e.g., SNAIL, TWIST, ZEB), epigenetic modifications, microRNAs (e.g., miR-200 family) and more recently, long non-coding RNAs. However, the relevance of metabolic pathways in EMT is only recently being recognized. Importantly, alterations in key metabolic pathways affect cancer development and progression. In this review, we report the roles of key EMT factors and describe their interactions and interconnectedness. We introduce metabolic pathways that are involved in EMT, including glycolysis, the TCA cycle, lipid and amino acid metabolism, and characterize the relationship between EMT factors and cancer metabolism. Finally, we present therapeutic opportunities involving EMT, with particular focus on cancer metabolic pathways

    NFE2-Related transcription factor 2 coordinates antioxidant defense with thyroglobulin production and iodination in the thyroid gland

    Get PDF
    Background: The thyroid gland has a special relationship with oxidative stress. While generation of oxidative substances is part of normal iodide metabolism during thyroid hormone synthesis, the gland must also defend itself against excessive oxidation in order to maintain normal function. Antioxidant and detoxification enzymes aid thyroid cells to maintain homeostasis by ameliorating oxidative insults, including during exposure to excess iodide, but the factors that coordinate their expression with the cellular redox status are not known. The antioxidant response system comprising the ubiquitously expressed NFE2-related transcription factor 2 (Nrf2) and its redox-sensitive cytoplasmic inhibitor Kelch-like ECH-associated protein 1 (Keap1) defends tissues against oxidative stress, thereby protecting against pathologies that relate to DNA, protein, and/or lipid oxidative damage. Thus, it was hypothesized that Nrf2 should also have important roles in maintaining thyroid homeostasis. Methods: Ubiquitous and thyroid-specific male C57BL6J Nrf2 knockout (Nrf2-KO) mice were studied. Plasma and thyroids were harvested for evaluation of thyroid function tests by radioimmunoassays and of gene and protein expression by real-time polymerase chain reaction and immunoblotting, respectively. Nrf2-KO and Keap1-KO clones of the PCCL3 rat thyroid follicular cell line were generated using CRISPR/Cas9 technology and were used for gene and protein expression studies. Software-predicted Nrf2 binding sites on the thyroglobulin enhancer were validated by site-directed in vitro mutagenesis and chromatin immunoprecipitation. Results: The study shows that Nrf2 mediates antioxidant transcriptional responses in thyroid cells and protects the thyroid from oxidation induced by iodide overload. Surprisingly, it was also found that Nrf2 has a dramatic impact on both the basal abundance and the thyrotropin-inducible intrathyroidal abundance of thyroglobulin (Tg), the precursor protein of thyroid hormones. This effect is mediated by cell-autonomous regulation of Tg gene expression by Nrf2 via its direct binding to two evolutionarily conserved antioxidant response elements in an upstream enhancer. Yet, despite upregulating Tg levels, Nrf2 limits Tg iodination both under basal conditions and in response to excess iodide. Conclusions: Nrf2 exerts pleiotropic roles in the thyroid gland to couple cell stress defense mechanisms to iodide metabolism and the thyroid hormone synthesis machinery, both under basal conditions and in response to excess iodide.Fil: Ziros, Panos G. Lausanne University; SuizaFil: Habeos, Ioannis. Patras University; GreciaFil: Chartoumpekis, Dionysios V. University of Pittsburgh; Estados UnidosFil: Ntalampyra, Eleni. Universite de Lausanne; SuizaFil: Somm, Emmanuel. Universite de Lausanne; SuizaFil: Renaud, Cédric O.. Universite de Lausanne; SuizaFil: Bongiovanni, Massimo. Institute Of Pathology Locarno; SuizaFil: Trougakos, Ioannis P. Universidad Nacional y Kapodistríaca de Atenas; GreciaFil: Yamamoto, Masayuki. University Of Tohoku; JapónFil: Kensler, Thomas W.. University of Pittsburgh at Johnstown; Estados UnidosFil: Santisteban, Pilar. Universidad Autónoma de Madrid; EspañaFil: Carrasco, Nancy. University of Yale. School of Medicine; Estados UnidosFil: Ris Stalpers, Carrie. Academic Medical Center; Países BajosFil: Amendola, Elena. Universidad de Nápoles; ItaliaFil: Liao, Xiao-Hui. University of Chicago; Estados UnidosFil: Rossich, Luciano Esteban. Comisión Nacional de Energía Atómica de Argentina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Thomasz, Lisa. Comisión Nacional de Energía Atómica de Argentina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Juvenal, Guillermo Juan. Comisión Nacional de Energía Atómica de Argentina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Refetoff, Samuel. University of Chicago; Estados UnidosFil: Sykiotis, Gerasimos P.. Universite de Lausanne; Suiz

    The Transcriptomic Response of the Murine Thyroid Gland to Iodide Overload and the Role of the Nrf2 Antioxidant System

    Get PDF
    Background: Thyroid follicular cells have physiologically high levels of reactive oxygen species because oxidation of iodide is essential for the iodination of thyroglobulin (Tg) during thyroid hormone synthesis. Thyroid follicles (the functional units of the thyroid) also utilize incompletely understood autoregulatory mechanisms to defend against exposure to excess iodide. To date, no transcriptomic studies have investigated these phenomena in vivo. Nuclear erythroid factor 2 like 2 (Nrf2 or Nfe2l2) is a transcription factor that regulates the expression of numerous antioxidant and other cytoprotective genes. We showed previously that the Nrf2 pathway regulates the antioxidant defense of follicular cells, as well as Tg transcription and Tg iodination. We, thus, hypothesized that Nrf2 might be involved in the transcriptional response to iodide overload. Methods: C57BL6/J wild-type (WT) or Nrf2 knockout (KO) male mice were administered regular water or water supplemented with 0.05% sodium iodide for seven days. RNA from their thyroids was prepared for next-generation RNA sequencing (RNA-Seq). Gene expression changes were assessed and pathway analyses were performed on the sets of differentially expressed genes. Results: Analysis of differentially expressed messenger RNAs (mRNAs) indicated that iodide overload upregulates inflammatory-, immune-, fibrosis- and oxidative stress-related pathways, including the Nrf2 pathway. Nrf2 KO mice showed a more pronounced inflammatory–autoimmune transcriptional response to iodide than WT mice. Compared to previously published datasets, the response patterns observed in WT mice had strong similarities with the patterns typical of Graves’ disease and papillary thyroid carcinoma (PTC). Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) also responded to iodide overload, with the latter targeting mRNAs that participate mainly in inflammation pathways. Conclusions: Iodide overload induces the Nrf2 cytoprotective response and upregulates inflammatory, immune, and fibrosis pathways similar to autoimmune hyperthyroidism (Graves’ disease) and PTC

    Differential Expression of MicroRNAs in Adipose Tissue after Long-Term High-Fat Diet-Induced Obesity in Mice

    Get PDF
    Obesity is a major health concern worldwide which is associated with increased risk of chronic diseases such as metabolic syndrome, cardiovascular disease and cancer. The elucidation of the molecular mechanisms involved in adipogenesis and obesogenesis is of essential importance as it could lead to the identification of novel biomarkers and therapeutic targets for the development of anti-obesity drugs. MicroRNAs (miRNAs) have been shown to play regulatory roles in several biological processes. They have become a growing research field and consist of promising pharmaceutical targets in various fields such as cancer, metabolism, etc. The present study investigated the possible implication of miRNAs in adipose tissue during the development of obesity using as a model the C57BLJ6 mice fed a high-fat diet

    Glucagon-like Peptide-1 Receptor in the Human Hypothalamus Is Associated with Body Mass Index and Colocalizes with the Anorexigenic Neuropeptide Nucleobindin-2/Nesfatin-1

    No full text
    Data on animals emphasize the importance of the neuronal glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) for feeding suppression, although it is unclear whether astrocytes participate in the transduction of anorectic GLP-1R-dependent signals. In humans, the brain circuitry underlying these effects remains insufficiently investigated. The present study aimed to explore GLP-1R protein expression in the human hypothalamus and its correlation with body mass index (BMI). Sections of hypothalamus from 28 autopsy cases, 11 with normal weight (BMI < 25 kg/m2) and 17 with non-normal weight (BMI ≥ 25 kg/m2), were examined using immunohistochemistry and double immunofluorescence labeling. Prominent GLP-1R immunoexpression was detected in neurons of several hypothalamic nuclei, including paraventricular, supraoptic, and infundibular nuclei; the lateral hypothalamic area (LH); and basal forebrain nuclei. Interestingly, in the LH, GLP-1R was significantly decreased in individuals with BMI ≥ 25 kg/m2 compared with their normal weight counterparts (p = 0.03). Furthermore, GLP-1R was negatively correlated (τb = −0.347, p = 0.024) with BMI levels only in the LH. GLP-1R extensively colocalized with the anorexigenic and antiobesogenic neuropeptide nucleobindin-2/nesfatin-1 but not with the astrocytic marker glial fibrillary acidic protein. These data suggest a potential role for GLP-1R in the regulation of energy balance in the human hypothalamus. In the LH, an appetite- and reward-related brain region, reduced GLP-1R immunoexpression may contribute to the dysregulation of homeostatic and/or hedonic feeding behavior. Possible effects of NUCB2/nesfatin-1 on central GLP-1R signaling require further investigation

    A review on cell-free RNA profiling: Insights into metabolic diseases and predictive value for bariatric surgery outcomes

    No full text
    Background: The advent of liquid biopsies presents a novel, minimally invasive methodology for the detection of disease biomarkers, offering a significant advantage over traditional biopsy techniques. Particularly, the analysis of cell-free RNA (cfRNA) has garnered interest due to its dynamic expression profiles and the capability to study various RNA species, including messenger RNA (mRNA) and long non-coding RNA (lncRNA). These attributes position cfRNA as a versatile biomarker with broad potential applications in clinical research and diagnostics. Scope of Review: This review delves into the utility of cfRNA biomarkers as prognostic tools for obesity-related comorbidities, such as diabetes, dyslipidemia, and non-alcoholic fatty liver disease. Major conclusions: We evaluate the efficacy of cfRNA in forecasting metabolic outcomes associated with obesity and in identifying patients likely to experience favorable clinical outcomes following bariatric surgery. Additionally, this review synthesizes evidence from studies examining circulating cfRNA across different physiological and pathological states, with a focus on its role in diabetes, including disease progression monitoring and treatment efficacy assessment. Through this exploration, we underscore the emerging relevance of cfRNA signatures in the context of obesity and its comorbidities, setting the stage for future investigative efforts in this rapidly advancing domain

    Notch intracellular domain overexpression in adipocytes confers lipodystrophy in mice

    No full text
    Objective: The Notch family of intermembrane receptors is highly conserved across species and is involved in cell fate and lineage control. Previous in vitro studies have shown that Notch may inhibit adipogenesis. Here we describe the role of Notch in adipose tissue by employing an in vivo murine model which overexpresses Notch in adipose tissue. Methods: Albino C57BL/6J RosaNICD/NICD::Adipoq-Cre (Ad-NICD) male mice were generated to overexpress the Notch intracellular domain (NICD) specifically in adipocytes. Male RosaNICD/NICD mice were used as controls. Mice were evaluated metabolically at the ages of 1 and 3 months by assessing body weights, serum metabolites, body composition (EchoMRI), glucose tolerance and insulin tolerance. Histological sections of adipose tissue depots as well as of liver were examined. The mRNA expression profile of genes involved in adipogenesis was analyzed by quantitative real-time PCR. Results: The Ad-NICD mice were heavier with significantly lower body fat mass compared to the controls. Small amounts of white adipose tissue could be seen in the 1-month old Ad-NICD mice, but was almost absent in the 3-months old mice. The Ad-NICD mice also had higher serum levels of glucose, insulin, triglyceride and non-esterified fatty acids. These differences were more prominent in the older (3-months) than in the younger (1-month) mice. The Ad-NICD mice also showed severe insulin resistance along with a steatotic liver. Gene expression analysis in the adipose tissue depots showed a significant repression of lipogenic (Fasn, Acacb) and adipogenic pathways (C/ebpα, C/ebpβ, Pparγ2, Srebf1). Conclusions: Increased Notch signaling in adipocytes in mice results in blocked expansion of white adipose tissue which leads to ectopic accumulation of lipids and insulin resistance, thus to a lipodystrophic phenotype. These results suggest that further investigation of the role of Notch signaling in adipocytes could lead to the manipulation of this pathway for therapeutic interventions in metabolic disease

    Brown Adipose Tissue Responds to Cold and Adrenergic Stimulation by Induction of FGF21

    No full text
    Fibroblast growth factor-21 (FGF21) is a pleiotropic protein involved in glucose, lipid metabolism and energy homeostasis, with main tissues of expression being the liver and adipose tissue. Brown adipose tissue (BAT) is responsible for cold-induced thermogenesis in rodents. The role of FGF21 in BAT biology has not been investigated. In the present study, wild-type C57BL/6J mice as well as a brown adipocyte cell line were used to explore the potential role of cold exposure and beta 3-adrenergic stimulation in the expression of FGF21 in BAT. Our results demonstrate that short-term exposure to cold, as well as beta 3-adrenergic stimulation, causes a significant induction of FGF21 mRNA levels in BAT, without a concomitant increase in FGF21 plasma levels. This finding opens new routes for the potential use of pharmaceuticals that could induce FGF21 and, hence, activate BAT thermogenesis. (C) 2011 The Feinstein Institute for Medical Research, www.feinsteininstitute.or

    Electrophilic nitro-oleic acid reverses obesity-induced hepatic steatosis

    No full text
    Non-alcoholic fatty liver disease (NAFLD) is linked to obesity and insulin resistance and is the most prevalent chronic liver disease. During the development of obesity and NAFLD, mitochondria adapt to the increased lipid load in hepatocytes by increasing the rate of fatty acid oxidation. In concert with this, reactive species (RS) generation is increased, damaging hepatocytes and inducing inflammation. Hepatic mitochondrial dysfunction is central to the pathogenesis of NAFLD via undefined mechanisms. There are no FDA approved treatments for NAFLD other than weight loss and management of glucose tolerance. Electrophilic nitro-oleic acid (NO2-OA) displays anti-inflammatory and antioxidant signaling actions, thus mitochondrial dysfunction, RS production and inflammatory responses to NO2-OA and the insulin sensitizer rosiglitazone were evaluated in a murine model of insulin resistance and NAFLD. Mice on HFD for 20 wk displayed increased adiposity, insulin resistance and hepatic lipid accumulation (steatosis) compared to mice on normal chow (NC). The HFD mice had mitochondrial dysfunction characterized by lower hepatic mitochondrial complex I, IV and V activity compared to mice on NC. Treatment with NO2-OA or rosiglitazone for the last 42 days (out of 20 wk) abrogated HFD-mediated decreases in hepatic mitochondrial complex I, IV and V activity. Notably, NO2-OA treatment normalized hepatic triglyceride levels and significantly reversed hepatic steatosis. Despite the improved glucose tolerance observed upon rosiglitazone treatment, liver weight and hepatic triglycerides were significantly increased over vehicle-treated HFD mice. These observations support that the pleiotropic signaling actions of electrophilic fatty acids limit the complex hepatic and systemic pathogenic responses instigated by obesity, without the adverse effects of thiazolidinedione drugs such as rosiglitazone
    corecore