44 research outputs found
Standardization of a protocol for shotgun proteomic analysis of saliva
Saliva contains numerous proteins and peptides, each of them carries a number of biological functions that are very important in maintaining the oral cavity health and also yields information about both local and systemic diseases. Currently, proteomic analysis is the basis for large-scale identification of these proteins and discovery of new biomarkers for distinct diseases. Objective: This study compared methodologies to extract salivary proteins for proteomic analysis.
Material and MethodsSaliva samples were collected from 10 healthy volunteers. In the first test, the necessity for using an albumin and IgG depletion column was evaluated, employing pooled samples from the 10 volunteers. In the second test, the analysis of the pooled samples was compared with individual analysis of one sample. Salivary proteins were extracted and processed for analysis by LC-ESI-MS/MS. Results: In the first test, we identified only 35 proteins using the albumin and IgG depletion column, while we identified 248 proteins without using the column. In the second test, the pooled sample identified 212 proteins, such as carbonic anhydrase 6, cystatin isoforms, histatins 1 and 3, lysozyme C, mucin 7, protein S100A8 and S100A9, and statherin, while individual analysis identified 239 proteins, among which are carbonic anhydrase 6, cystatin isoforms, histatin 1 and 3, lactotransferrin, lyzozyme C, mucin 7, protein S100A8 and S100A9, serotransferrin, and statherin. Conclusions: The standardization of protocol for salivary proteomic analysis was satisfactory, since the identification detected typical salivary proteins, among others. The results indicate that using the column for depletion of albumin and IgG is not necessary and that performing individual analysis of saliva samples is possible
Avaliação sanitária e fisiológica de sementes de mogno e baru tratadas com captana
Mogno (Swietenia mahagoni, Meliaceae) e baru (Dipteryx alata, Fabaceae) são espécies arbóreas de grande importância econômica para produção de móveis de luxo, decoração, artesanato e alimentação. No entanto, a ação de patógenos associados s sementes pode causar redução em populações dessas espécies. Tratamentos com fungicidas constituem-se em uma medida segura e de baixo custo para o controle de fungos associados s sementes. Dessa forma, o objetivo do trabalho foi avaliar a influência de diferentes doses de fungicidas na qualidade fisiológica e sanitária de sementes de mogno e baru. As sementes foram tratadas com três doses do fungicida Captaní® (0,1; 0,3 e 0,5 g/ 100 g de sementes). As avaliações sanitárias foram realizadas a partir de testes em caixas de poliestireno cristal (gerbox) forrado com papel filtro, mostrando os diferentes efeitos nas sementes das espécies analisadas. O tratamento químico proporcionou uma redução na incidência de fungos associados s sementes de baru, recomendando-se o uso deste princípio ativo para o tratamento de sementes dessa espécie. Apesar de ser recomendado para o tratamento de sementes de baru, o tratamento químico influenciou negativamente no desenvolvimento das sementes de mogno, prejudicando a germinação devido provavelmente a penetrância do produto através do tegumento, influenciando negativamente no desenvolvimento do embrião
Effect of Physical Exercise and Genetic Background on Glucose Homeostasis and Liver/Muscle Proteomes in Mice.
We compared the parameters related to glucose homeostasis, and liver and muscle proteomes in fluorosis-susceptible (A/J; S) and fluorosis-resistant (129P3/J; R) mice in response to fluoride (F) exposure and exercise. Ninety male mice (45 R-mice and 45 S-mice) were randomized into three groups: (SI; RI) No-F, No-Exercise, (SII; RII) 50 ppm F, No-Exercise, (SIII; RIII) 50 ppm F, Exercise. Overall, mean F concentrations in the plasma and femur were significantly higher in R-mice compared with S-mice. In R-mice, exercise resulted in an increase in F accumulation in the femur. In S-mice, the mean plasma glucose level was significantly higher in Group II compared with Groups I and III. There was an increase in liver proteins involved in energy flux and antioxidant enzymes in non-exercise groups (I, II) of S-mice in comparison with the corresponding groups of R-mice. The results also showed a decrease in muscle protein expression in Group I S-mice compared with their R-mice counterparts. In conclusion, the findings suggest an increased state of oxidative stress in fluorosis-susceptible mice that might be exacerbated by the treatment with F. In addition, fluorosis-susceptible mice have plasma glucose levels higher than fluorosis-resistant mice on exposure to F, and this is not affected by exercise
Salivary protein candidates for biomarkers of oral disorders in people with a crack cocaine use disorder
The use of cocaine and its main derivative, crack, can cause some systemic effects that may lead to the development of some oral disorders. Objective: To assess the oral health of people with a crack cocaine use disorder and identify salivary protein candidates for biomarkers of oral disorders. Methodology: A total of 40 volunteers hospitalized for rehabilitation for crack cocaine addiction were enrolled; nine were randomly selected for proteomic analysis. Intraoral examination, report of DMFT, gingival and plaque index, xerostomia, and non-stimulated saliva collection were performed. A list of proteins identified was generated from the UniProt database and manually revised. Results: The mean age (n=40) was 32 (±8.88; 18–51) years; the mean DMFT index was 16±7.70; the mean plaque and gingival index were 2.07±0.65 and 2.12±0.64, respectively; and 20 (50%) volunteers reported xerostomia. We identified 305 salivary proteins (n=9), of which 23 were classified as candidate for biomarkers associated with 14 oral disorders. The highest number of candidates for biomarkers was associated with carcinoma of head and neck (n=7) and nasopharyngeal carcinoma (n=7), followed by periodontitis (n=6). Conclusions: People with a crack cocaine use disorder had an increased risk of dental caries and gingival inflammation; less than half had oral mucosal alterations, and half experienced xerostomia. As possible biomarkers for 14 oral disorders, 23 salivary proteins were identified. Oral cancer and periodontal disease were the most often associated disorders with biomarkers
Effects of Fluoride on Submandibular Glands of Mice: Changes in Oxidative Biochemistry, Proteomic Profile, and Genotoxicity
Although fluoride (F) is well-known to prevent dental caries, changes in cell processes in different tissues have been associated with its excessive exposure. Thus, this study aimed to evaluate the effects of F exposure on biochemical, proteomic, and genotoxic parameters of submandibular glands. Twenty one old rats (n = 30) were allocated into three groups: 60 days administration of drinking water containing 10 mgF/L, 50 mgF/L, or only deionized water (control). The submandibular glands were collected for oxidative biochemistry, protein expression profile, and genotoxic potential analyses. The results showed that both F concentrations increased the levels of thiobarbituric acid–reactive substances (TBARS) and reduced glutathione (GSH) and changed the proteomic profile, mainly regarding the cytoskeleton and cellular activity. Only the exposure to 50 mgF/L induced significant changes in DNA integrity. These findings reinforce the importance of continuous monitoring of F concentration in drinking water and the need for strategies to minimize F intake from other sources to obtain maximum preventive/therapeutic effects and avoid potential adverse effects
Metabolic effect of low fluoride levels in the islets of NOD mice: integrative morphological, immunohistochemical, and proteomic analyses
Fluoride (F) has been widely used to control dental caries, and studies suggest beneficial effects against diabetes when a low dose of F is added to the drinking water (10 mgF/L). Objectives: This study evaluated metabolic changes in pancreatic islets of NOD mice exposed to low doses of F and the main pathways altered by the treatment. Methodology: In total, 42 female NOD mice were randomly divided into two groups, considering the concentration of F administered in the drinking water for 14 weeks: 0 or 10 mgF/L. After the experimental period, the pancreas was collected for morphological and immunohistochemical analysis, and the islets for proteomic analysis. Results: In the morphological and immunohistochemical analysis, no significant differences were found in the percentage of cells labelled for insulin, glucagon, and acetylated histone H3, although the treated group had higher percentages than the control group. Moreover, no significant differences were found for the mean percentages of pancreatic areas occupied by islets and for the pancreatic inflammatory infiltrate between the control and treated groups. Proteomic analysis showed large increases in histones H3 and, to a lesser extent, in histone acetyltransferases, concomitant with a decrease in enzymes involved in the formation of acetyl-CoA, besides many changes in proteins involved in several metabolic pathways, especially energy metabolism. The conjunction analysis of these data showed an attempt by the organism to maintain protein synthesis in the islets, even with the dramatic changes in energy metabolism. Conclusion: Our data suggests epigenetic alterations in the islets of NOD mice exposed to F levels comparable to those found in public supply water consumed by humans
Effects of long-term fluoride exposure are associated with oxidative biochemistry impairment and global proteomic modulation, but not genotoxicity, in parotid glands of mice
Fluoride has become widely used in dentistry because of its effectiveness in caries control. However, evidence indicates that excessive intake interferes with the metabolic processes of different tissues. Thus, this study aimed to investigate the effects of long-term exposure to F on the parotid salivary gland of mice, from the analysis of oxidative, proteomic and genotoxic parameters.
The animals received deionized water containing 0, 10 or 50 mg/L of F, as sodium fluoride, for 60 days. After, parotid glands were collected for analysis of oxidative biochemistry, global proteomic profile, genotoxicity assessment and histopathological analyses.
The results revealed that exposure to fluoride interfered in the biochemical homeostasis of the parotid gland, with increased levels of thiobarbituric acid reactive species and reduced glutathione in the exposed groups; as well as promoted alteration of the glandular proteomic profile in these groups, especially in structural proteins and proteins related to oxidative stress. However, genotoxic assessment demonstrated that exposure to fluoride did not interfere with DNA integrity in these concentrations and durations of exposure. Also, it was not observed histopathological alterations in parotid gland
Do commercial whitening dentifrices increase enamel erosive tooth wear?
Objective: This in vitro study evaluated the effect of commercial whitening dentifrices on erosive tooth wear (ETW) of bovine enamel samples, in comparison with commercial regular dentifrices. Methodology: Sixty bovine crowns were embedded in acrylic resin, polished and then had their baseline profile determined. They were randomly assigned to 5 groups (n=12/group), according to the type of commercial dentifrice to be tested: GI – Crest Anti-cavity Regular; GII – Crest 3D White; GIII – Colgate Total 12 Clean Mint; GIV – Colgate Optic White; GV – Placebo (negative control, fluoride-free dentifrice). The samples were submitted to daily erosive and abrasive challenges for 3 days. The erosive challenges were performed 3 times a day by immersing the specimens in 0.1% citric acid solution (pH 2.5) for 90 s. Each day after the first and last erosive challenges, the specimens were subjected to the abrasive challenge for 15 s, using a toothbrushing machine (Biopdi, São Carlos, SP, Brazil), soft toothbrushes and slurry (1:3 g/ml) of the tested toothpastes (1.5 N). The specimens were kept in artificial saliva between the challenges. The final profile was obtained and the ETW (µm) was calculated. Data were analyzed by Kruskal-Wallis and Dunn’s tests (p<0.05). Results: All dentifrices tested significantly reduced the enamel wear in comparison with the Placebo, except GIII. The median (95% CI) ETW was 1.35 (1.25-1.46)bc for GI, 1.17 (1.01-1.34)cd for GII, 1.36 (1.28-1.45)ab for GIII, 1.08 (1.04-1.14)d for GIV and 2.28 (2.18-2.39)a for GV. Conclusion: When dentifrices from the same manufacturer were compared, the whitening dentifrices led to similar or less wear than the regular ones
Acquired enamel pellicle protects gastroesophageal reflux disease patients against erosive tooth wear
Abstract The objective of this study was to compare the protein profile of the acquired enamel pellicle (AEP) formed in vivo in patients with or without gastroesophageal reflux disease (GERD), and with or without erosive tooth wear (ETW). Twenty-four volunteers were divided into 3 groups: 1) GERD and ETW; 2) GERD without ETW; and 3) control (without GERD). The AEP formed 120 min after prophylaxis was collected from the lingual/palatal surfaces. The samples were subjected to mass spectrometry (nLC-ESI-MS/MS) and label-free quantification by Protein Lynx Global Service software. A total of 213 proteins were identified, or 119, 92 and 106 from each group, respectively. Group 2 showed a high number of phosphorylated and calcium-binding proteins. Twenty-three proteins were found in all the groups, including 14-3-3 protein zeta/delta and 1-phosphatidylinositol. Several intracellular proteins that join saliva after the exfoliation of oral mucosa cells might have the potential to bind hydroxyapatite, or participate in forming supramolecular aggregates that bind to precursor proteins in the AEP. Proteins might play a central role in protecting the dental surface against acid dissolution