38 research outputs found

    Framing, Context, and Methods (Chapter 1)

    Get PDF
    Working Group I (WGI) of the Intergovernmental Panel on Climate Change (IPCC) assesses the current evidence on the physical science of climate change, evaluating knowledge gained from observations, reanalyses, paleoclimate archives and climate model simulations, as well as physical, chemical and biological climate processes. This chapter sets the scene for the WGI Assessment, placing it in the context of ongoing global and regional changes, international policy responses, the history of climate science and the evolution from previous IPCC assessments, including the Special Reports prepared as part of this Assessment Cycle. This chapter presents key concepts and methods, relevant recent developments, and the modelling and scenario framework used in this Assessment

    Evolution of Surface Hydrology in the Sahelo-Sudanian Strip: An Updated Review

    Get PDF
    In the West African Sahel, two paradoxical hydrological behaviors have occurred during the last five decades. The first paradox was observed during the 1968–1990s ‘Great Drought’ period, during which runoff significantly increased. The second paradox appeared during the subsequent period of rainfall recovery (i.e., since the 1990s), during which the runoff coefficient continued to increase despite the general re-greening of the Sahel. This paper reviews and synthesizes the literature on the drivers of these paradoxical behaviors, focusing on recent works in the West African Sahelo/Sudanian strip, and upscaling the hydrological processes through an analysis of recent data from two representative areas of this region. This paper helps better determine the respective roles played by Land Use/Land Cover Changes (LULCC), the evolution of rainfall intensity and the occurrence of extreme rainfall events in these hydrological paradoxes. Both the literature review and recent data converge in indicating that the first Sahelian hydrological paradox was mostly driven by LULCC, while the second paradox has been caused by both LULCC and climate evolution, mainly the recent increase in rainfall intensity

    A perspective on the next generation of Earth system model scenarios: towards representative emission pathways (REPs)

    Get PDF
    In every IPCC Assessment cycle, a multitude of scenarios are assessed, with different scope and emphasis throughout the various Working Group and Special Reports and their respective chapters. Within the reports, the ambition is to integrate knowledge on possible climate futures across the Working Groups and scientific research domains based on a small set of ‘framing pathways’, such as the so-called RCP pathways from the Fifth IPCC Assessment report (AR5) and the SSP-RCP scenarios in the Sixth Assessment Report (AR6). This perspective, initiated by discussions at the IPCC Bangkok workshop in April 2023 on the “Use of Scenarios in AR6 and Subsequent Assessments”, is intended to serve as one of the community contributions to highlight needs for the next generation of framing pathways that is being advanced under the CMIP umbrella for use in the IPCC AR7. Here we suggest a number of policy research objectives that such a set of framing pathways should ideally fulfil, including mitigation needs for meeting the Paris Agreement objectives, the risks associated with carbon removal strategies, the consequences of delay in enacting that mitigation, guidance for adaptation needs, loss and damage, and for achieving mitigation in the wider context of Societal Development goals. Based on this context we suggest that the next generation of climate scenarios for Earth System Models should evolve towards ‘Representative Emission Pathways’ (REPs) and suggest key categories for such pathways. These ‘framing pathways’ should address the most critical mitigation policy and adaptation needs over the next 5–10 years. In our view the most important categories are those relevant in the context of the Paris Agreement long-term goal, specifically an immediate action (low overshoot) 1.5 °C pathway, and a delayed action (high overshoot) 1.5 °C pathway. Two other key categories are a pathway category approximately in line with current (as expressed by 2023) near- and long-term policy objectives, and a higher emissions category that is approximately in line with “current policies” (as expressed by 2023). We also argue for the scientific and policy relevance in exploring two ‘worlds that could have been’. One of these categories has high emission trajectories well above what is implied by current policies, and the other has very low emission trajectories that assume that global mitigation action in line with limiting warming to 1.5 °C without overshoot had begun in 2015. Finally, we note that timely provision of new scientific information on pathways is critical to inform the development and implementation of climate policy. For the second Global Stocktake under the Paris Agreement in 2028, and to inform subsequent development of Nationally Determined Contributions (NDCs) up to 2040, scientific inputs are required well before 2028. These needs should be carefully considered in the development timeline of community modelling activities including those under CMIP7

    A perspective on the next generation of Earth system model scenarios: towards representative emission pathways (REPs)

    Get PDF
    In every Intergovernmental Panel on Climate Change (IPCC) Assessment cycle, a multitude of scenarios are assessed, with different scope and emphasis throughout the various Working Group reports and special reports, as well as their respective chapters. Within the reports, the ambition is to integrate knowledge on possible climate futures across the Working Groups and scientific research domains based on a small set of “framing pathways” such as the so-called representative concentration pathways (RCPs) in the Fifth IPCC Assessment Report (AR5) and the shared socioeconomic pathway (SSP) scenarios in the Sixth Assessment Report (AR6). This perspective, initiated by discussions at the IPCC Bangkok workshop in April 2023 on the “Use of Scenarios in AR6 and Subsequent Assessments”, is intended to serve as one of the community contributions to highlight the needs for the next generation of framing pathways that is being advanced under the Coupled Model Intercomparison Project (CMIP) umbrella, which will influence or even predicate the IPCC AR7 consideration of framing pathways. Here we suggest several policy research objectives that such a set of framing pathways should ideally fulfil, including mitigation needs for meeting the Paris Agreement objectives, the risks associated with carbon removal strategies, the consequences of delay in enacting that mitigation, guidance for adaptation needs, loss and damage, and for achieving mitigation in the wider context of societal development goals. Based on this context, we suggest that the next generation of climate scenarios for Earth system models should evolve towards representative emission pathways (REPs) and suggest key categories for such pathways. These framing pathways should address the most critical mitigation policy and adaptation plans that need to be implemented over the next 10 years. In our view, the most important categories are those relevant in the context of the Paris Agreement long-term goal, specifically an immediate action (low overshoot) 1.5 °C pathway and a delayed action (high overshoot) 1.5 °C pathway. Two other key categories are a pathway category approximately in line with current (as expressed by 2023) near- and long-term policy objectives, as well as a higher-emission category that is approximately in line with “current policies” (as expressed by 2023). We also argue for the scientific and policy relevance in exploring two “worlds that could have been”. One of these categories has high-emission trajectories well above what is implied by current policies and the other has very-low-emission trajectories which assume that global mitigation action in line with limiting warming to 1.5 °C without overshoot had begun in 2015. Finally, we note that the timely provision of new scientific information on pathways is critical to inform the development and implementation of climate policy. Under the Paris Agreement, for the second global stocktake, which will occur in 2028, and to inform subsequent development of nationally determined contributions (NDCs) up to 2040, scientific inputs are required by 2027. These needs should be carefully considered in the development timeline of community modelling activities, including those under CMIP7

    A perspective on the next generation of Earth system model scenarios: towards representative emission pathways (REPs)

    Get PDF
    In every Intergovernmental Panel on Climate Change (IPCC) Assessment cycle, a multitude of scenarios are assessed, with different scope and emphasis throughout the various Working Group reports and special reports, as well as their respective chapters. Within the reports, the ambition is to integrate knowledge on possible climate futures across the Working Groups and scientific research domains based on a small set of “framing pathways” such as the so-called representative concentration pathways (RCPs) in the Fifth IPCC Assessment Report (AR5) and the shared socioeconomic pathway (SSP) scenarios in the Sixth Assessment Report (AR6). This perspective, initiated by discussions at the IPCC Bangkok workshop in April 2023 on the “Use of Scenarios in AR6 and Subsequent Assessments”, is intended to serve as one of the community contributions to highlight the needs for the next generation of framing pathways that is being advanced under the Coupled Model Intercomparison Project (CMIP) umbrella, which will influence or even predicate the IPCC AR7 consideration of framing pathways. Here we suggest several policy research objectives that such a set of framing pathways should ideally fulfil, including mitigation needs for meeting the Paris Agreement objectives, the risks associated with carbon removal strategies, the consequences of delay in enacting that mitigation, guidance for adaptation needs, loss and damage, and for achieving mitigation in the wider context of societal development goals. Based on this context, we suggest that the next generation of climate scenarios for Earth system models should evolve towards representative emission pathways (REPs) and suggest key categories for such pathways. These framing pathways should address the most critical mitigation policy and adaptation plans that need to be implemented over the next 10 years. In our view, the most important categories are those relevant in the context of the Paris Agreement long-term goal, specifically an immediate action (low overshoot) 1.5 °C pathway and a delayed action (high overshoot) 1.5 °C pathway. Two other key categories are a pathway category approximately in line with current (as expressed by 2023) near- and long-term policy objectives, as well as a higher-emission category that is approximately in line with “current policies” (as expressed by 2023). We also argue for the scientific and policy relevance in exploring two “worlds that could have been”. One of these categories has high-emission trajectories well above what is implied by current policies and the other has very-low-emission trajectories which assume that global mitigation action in line with limiting warming to 1.5 °C without overshoot had begun in 2015. Finally, we note that the timely provision of new scientific information on pathways is critical to inform the development and implementation of climate policy. Under the Paris Agreement, for the second global stocktake, which will occur in 2028, and to inform subsequent development of nationally determined contributions (NDCs) up to 2040, scientific inputs are required by 2027. These needs should be carefully considered in the development timeline of community modelling activities, including those under CMIP7.</p

    Synthesis report of the IPCC Sixth Assessment Report (AR6), Longer report. IPCC.

    Get PDF
    This Synthesis Report (SYR) of the IPCC Sixth Assessment Report (AR6) summarises the state of knowledge of climate change, its widespread impacts and risks, and climate change mitigation and adaptation, based on the peer-reviewed scientific, technical and socio-economic literature since the publication of the IPCC’s Fifth Assessment Report (AR5) in 2014. The assessment is undertaken within the context of the evolving international landscape, in particular, developments in the UN Framework Convention on Climate Change (UNFCCC) process, including the outcomes of the Kyoto Protocol and the adoption of the Paris Agreement. It reflects the increasing diversity of those involved in climate action. This report integrates the main findings of the AR6 Working Group reports1 and the three AR6 Special Reports. It recognizes the interdependence of climate, ecosystems and biodiversity, and human societies; the value of diverse forms of knowledge; and the close linkages between climate change adaptation, mitigation, ecosystem health, human well-being and sustainable development. Building on multiple analytical frameworks, including those from the physical and social sciences, this report identifies opportunities for transformative action which are effective, feasible, just and equitable using concepts of systems transitions and resilient development pathways. Different regional classification schemes are used for physical, social and economic aspects, reflecting the underlying literature. After this introduction, Section 2, ‘Current Status and Trends’, opens with the assessment of observational evidence for our changing climate, historical and current drivers of human-induced climate change, and its impacts. It assesses the current implementation of adaptation and mitigation response options. Section 3, ‘Long-Term Climate and Development Futures’, provides a long-term assessment of climate change to 2100 and beyond in a broad range of socio-economic futures. It considers long-term characteristics, impacts, risks and costs in adaptation and mitigation pathways in the context of sustainable development. Section 4, ‘Near-Term Responses in a Changing Climate’, assesses opportunities for scaling up effective action in the period up to 2040, in the context of climate pledges, and commitments, and the pursuit of sustainable development. Based on scientific understanding, key findings can be formulated as statements of fact or associated with an assessed level of confidence using the IPCC calibrated language5 . The scientific findings are drawn from the underlying reports and arise from their Summary for Policymakers (hereafter SPM), Technical Summary (hereafter TS), and underlying chapters and are indicated by {} brackets. Figure 1.1 shows the Synthesis Report Figures Key, a guide to visual icons that are used across multiple figures within this report

    IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland.

    Get PDF
    This Synthesis Report (SYR) of the IPCC Sixth Assessment Report (AR6) summarises the state of knowledge of climate change, its widespread impacts and risks, and climate change mitigation and adaptation. It integrates the main findings of the Sixth Assessment Report (AR6) based on contributions from the three Working Groups1 , and the three Special Reports. The summary for Policymakers (SPM) is structured in three parts: SPM.A Current Status and Trends, SPM.B Future Climate Change, Risks, and Long-Term Responses, and SPM.C Responses in the Near Term.This report recognizes the interdependence of climate, ecosystems and biodiversity, and human societies; the value of diverse forms of knowledge; and the close linkages between climate change adaptation, mitigation, ecosystem health, human well-being and sustainable development, and reflects the increasing diversity of actors involved in climate action. Based on scientific understanding, key findings can be formulated as statements of fact or associated with an assessed level of confidence using the IPCC calibrated language

    Weather regimes over Senegal during the summer monsoon season using self-organizing maps and hierarchical ascendant classification. Part I : synoptic time scale

    No full text
    The aim of this work is to define over the period 1979-2002 the main synoptic weather regimes relevant for understanding the daily variability of rainfall during the summer monsoon season over Senegal. "Pure" synoptic weather regimes are defined by removing the influence of seasonal and interannual time scales, in order to highlight the day by day variability of the atmospheric circulation. The Self-Organizing Maps (SOM) approach, a clustering methodology based on non-linear artificial neural network, is combined with a Hierarchical Ascendant Classification to compute these regimes. Nine weather regimes are identified using the mean sea level pressure and 850 hPa wind field as variables, and gathered into three classes. Two of these weather regimes represent the classical 3-5-day African easterly waves with a mean wavelength of about 3,000 km. Three others are characterized by a modulation of the semi-permanent trough located along the western coast of West Africa and might be interpreted in terms of the 6-9-day easterly waves. The last four weather regimes are characterized by a more or less strong north south dipole of circulation. They can be interpreted as a northward/southward displacement of the Saharan Heat Low for two of them, and a filling/deepening of this depression for the other two. The circulation patterns of all these nine weather regimes are very consistent with the associated anomaly patterns of precipitable water, mid-troposphere vertical velocity, outgoing longwave radiation, and finally rainfall. Rainfall distribution is also highlighted over the southwestern area of Senegal

    Weather regimes over Senegal during the summer monsoon season using self-organizing maps and hierarchical ascendant classification. Part I: synoptic time scale

    No full text
    International audienceThe aim of this work is to define over the period 1979-2002 the main synoptic weather regimes relevant for understanding the daily variability of rainfall during the summer monsoon season over Senegal. "Pure" synoptic weather regimes are defined by removing the influence of seasonal and interannual time scales, in order to highlight the day by day variability of the atmospheric circulation. The Self-Organizing Maps (SOM) approach, a clustering methodology based on non-linear artificial neural network, is combined with a Hierarchical Ascendant Classification to compute these regimes. Nine weather regimes are identified using the mean sea level pressure and 850 hPa wind field as variables, and gathered into three classes. Two of these weather regimes represent the classical 3-5-day African easterly waves with a mean wavelength of about 3,000 km. Three others are characterized by a modulation of the semi-permanent trough located along the western coast of West Africa and might be interpreted in terms of the 6-9-day easterly waves. The last four weather regimes are characterized by a more or less strong north-south dipole of circulation. They can be interpreted as a northward/southward displacement of the Saharan Heat Low for two of them, and a filling/deepening of this depression for the other two. The circulation patterns of all these nine weather regimes are very consistent with the associated anomaly patterns of precipitable water, mid-troposphere vertical velocity, outgoing longwave radiation, and finally rainfall. Rainfall distribution is also highlighted over the southwestern area of Senegal
    corecore