888 research outputs found

    The level of non-thermal velocity fluctuations deduced from Doppler spectroscopy and its role on TJ-II confinement

    Full text link
    The goal of this investigation is to study, in the line of previous works, the level of velocity fluctuations in different scenarios of the TJ-II stellarator. The method followed consists in measuring the apparent Doppler temperature of C4+ and protons with high spectral resolution techniques with spatial resolution. The level of turbulent velocities in the plasma has been deduced from the difference observed between the apparent temperature of both species, following a method previously presented and borrowed from astrophysics. The study of this difference, as a function of plasma density and injected power, provides a way to explore if this turbulence plays any role in the confinement of the hot TJ-II plasma.Comment: 8 pages, 5 figure

    Bidirectional Text Compression in External Memory

    Get PDF
    Bidirectional compression algorithms work by substituting repeated substrings by references that, unlike in the famous LZ77-scheme, can point to either direction. We present such an algorithm that is particularly suited for an external memory implementation. We evaluate it experimentally on large data sets of size up to 128 GiB (using only 16 GiB of RAM) and show that it is significantly faster than all known LZ77 compressors, while producing a roughly similar number of factors. We also introduce an external memory decompressor for texts compressed with any uni- or bidirectional compression scheme

    The Effect of Core Current on Magnetic Materials

    Get PDF
    The effect on the hysteresis of sending a direct current through the core of a ferromagnetic torroid is described. A model describing this effect is then related to the magnetostrictive properties of the material. An easy method for determining the polarity of the magnetostrictive properties of a material is presented

    Wendelstein 7-X progress report

    Get PDF

    The concept of integrated data analysis of complementary experiments

    Get PDF

    Engineering Predecessor Data Structures for Dynamic Integer Sets

    Get PDF
    We present highly optimized data structures for the dynamic predecessor problem, where the task is to maintain a set S of w-bit numbers under insertions, deletions, and predecessor queries (return the largest element in S no larger than a given key). The problem of finding predecessors can be viewed as a generalized form of the membership problem, or as a simple version of the nearest neighbour problem. It lies at the core of various real-world problems such as internet routing. In this work, we engineer (1) a simple implementation of the idea of universe reduction, similar to van-Emde-Boas trees (2) variants of y-fast tries [Willard, IPL\u2783], and (3) B-trees with different strategies for organizing the keys contained in the nodes, including an implementation of dynamic fusion nodes [P?tra?cu and Thorup, FOCS\u2714]. We implement our data structures for w = 32,40,64, which covers most typical scenarios. Our data structures finish workloads faster than previous approaches while being significantly more space-efficient, e.g., they clearly outperform standard implementations of the STL by finishing up to four times as fast using less than a third of the memory. Our tests also provide more general insights on data structure design, such as how small sets should be stored and handled and if and when new CPU instructions such as advanced vector extensions pay off

    Integrated Diagnostics Design

    Get PDF
    • …
    corecore