
Bidirectional Text Compression in External
Memory
Patrick Dinklage
Technische Universität Dortmund, Department of Computer Science, Germany
patrick.dinklage@tu-dortmund.de

Jonas Ellert
Technische Universität Dortmund, Department of Computer Science, Germany
jonas.ellert@tu-dortmund.de

Johannes Fischer
Technische Universität Dortmund, Department of Computer Science, Germany
johannes.fischer@cs.tu-dortmund.de

Dominik Köppl
Kyushu University, Fukuoka, Japan Society for Promotion of Science, Japan
https://dkppl.de/
dominik.koeppl@inf.kyushu-u.ac.jp

Manuel Penschuck
Goethe University Frankfurt, Department of Computer Science, Germany
mpenschuck@ae.cs.uni-frankfurt.de

Abstract
Bidirectional compression algorithms work by substituting repeated substrings by references that,
unlike in the famous LZ77-scheme, can point to either direction. We present such an algorithm that
is particularly suited for an external memory implementation. We evaluate it experimentally on
large data sets of size up to 128 GiB (using only 16 GiB of RAM) and show that it is significantly
faster than all known LZ77 compressors, while producing a roughly similar number of factors. We
also introduce an external memory decompressor for texts compressed with any uni- or bidirectional
compression scheme.

2012 ACM Subject Classification Theory of computation → Data compression

Keywords and phrases text compression, bidirectional parsing, text decompression, external algo-
rithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2019.41

Related Version A full version of the paper is available at https://arxiv.org/abs/1907.03235.

Funding Dominik Köppl: JSPS KAKENHI Grant Number JP18F18120
Manuel Penschuck: Deutsche Forschungsgemeinschaft (DFG) grants ME 2088/3-2, ME 2088/4-2

1 Introduction

Text compression is a fundamental task when storing massive data sets. Most practical text
compressors such as gzip, bzip2, 7zip, etc., scan a text file with a sliding window, replacing
repetitive occurrences within this window. Although this approach is memory and time
efficient [3, 29], two occurrences of the same substring are neglected if their distance is
longer than the sliding window. More advanced solutions [12, 13, 9, 19, to mention only a
few examples] drop the idea of a sliding window, thereby finding also repetitions that are
far apart in the text. These so-called LZ77-algorithms have a better compression ratio in
practice [8, Sect. 6]. In recent years, these algorithms have also been transformed to the
external memory (EM) model [17, 21, 2].

© Patrick Dinklage, Jonas Ellert, Johannes Fischer, Dominik Köppl, and Manuel Penschuck;
licensed under Creative Commons License CC-BY

27th Annual European Symposium on Algorithms (ESA 2019).
Editors: Michael A. Bender, Ola Svensson, and Grzegorz Herman; Article No. 41; pp. 41:1–41:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/228086842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:patrick.dinklage@tu-dortmund.de
mailto:jonas.ellert@tu-dortmund.de
mailto:johannes.fischer@cs.tu-dortmund.de
https://orcid.org/0000-0002-8721-4444
https://dkppl.de/
mailto:dominik.koeppl@inf.kyushu-u.ac.jp
mailto:mpenschuck@ae.cs.uni-frankfurt.de
https://doi.org/10.4230/LIPIcs.ESA.2019.41
https://arxiv.org/abs/1907.03235
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 Bidirectional Text Compression in External Memory

In this article, we present a modification of LZ77, called plcpcomp, which is based on the
bidirectional compression scheme lcpcomp of [6], but is better suited for an efficient external
memory implementation due to its memory access patterns. We can compute this scheme by
scanning the text and two auxiliary arrays stored in EM (one of them being the permuted
longest common prefix array, hence the acronym plcp). We underline the performance of our
algorithm with evaluations showing that it is faster than any known LZ77 compressor for
massive non-highly repetitive data sets. We also present the first external decompressor for
files that are compressed with a bidirectional scheme.

1.1 Related Work
Our work is the first to join the fields of bidirectional and external memory compression.

1.1.1 Bidirectional Schemes
First considerations started with [29] who also coined this notation. [11] proved that finding
the optimal bidirectional parsing, i.e., a bidirectional parsing with the lowest number of
factors, is NP-complete. [6] were the first to present a greedy algorithm for producing a
bidirectional parsing called lcpcomp, which performs well in practice, but comes with no
theoretical performance guarantees on its size. [25] combined the techniques for lcpcomp [6]
and the longest-first grammar compression [26] in a compression algorithm running in O(n2)
time, which was subsequently improved to O(n lgn) time by [27]. Recently, [10] showed an
upper bound of z = O(b lg(n/b)) and a lower bound of z = Ω(b lgn) for some specific strings,
where b and z denote the minimal number of factors in an optimal bidirectional parsing and in
an optimal unidirectional parsing, respectively. This implies that bidirectional parsing can be
exponentially better than unidirectional parsing. They also proposed a bidirectional parsing
based on the Burrows-Wheeler transform (BWT). [22] introduced so-called string attractors,
showed that a bidirectional scheme is a string attractor and that every string attractor can
be represented with a bidirectional scheme. Last but not least, the bidirectional scheme
of [28] guarantees to produce at most as many factors as LZ77, but has the disadvantage of
a super-quadratic running time.

1.1.2 EM Compression Algorithms
Yanovsky [30] presented a compressor called ReCoil that is specialized on large DNA datasets.
Ferragina et al. [7] gave a construction algorithm of the Burrows-Wheeler transform in
EM. For LZ77 compression, [17] devised two algorithms called EM-LZscan and EM-LPF.
The former performs well on highly-repetitive data, but gets outperformed easily by EM-
LPF on other kinds of datasets. The LZ77 compressed files can be decompressed with an
algorithm due to [2], which also works in general for all files that have been compressed by a
unidirectional scheme. Finally, [21] presented an EM algorithm for computing the LZ-End
scheme [23], a variant of LZ77.

1.2 Preliminaries
Model of computation. We use the commonly accepted EM model by Aggarwal and
Vitter [1]. It features two memory types, namely fast internal memory (IM) which may hold
up to M data words, and slow EM of unbounded size. The measure of the performance
of an algorithm is the number of input and output operations (I/Os) required, where each
I/O transfers a block of B consecutive words between memory levels. Reading or writing

P. Dinklage, J. Ellert, J. Fischer, D. Köppl, and M. Penschuck 41:3

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

T a b a b b a b a b a b b a b b a a b a b a $
SA 22 21 16 19 17 6 1 8 13 3 10 20 15 18 5 7 12 2 9 14 4 11
ISA 7 18 10 21 15 6 16 8 19 11 22 17 9 20 13 3 5 14 4 12 2 1
Φ 6 12 13 14 18 17 5 1 2 3 4 7 8 9 20 21 19 15 16 10 22 11
LCP 0 0 1 1 3 5 4 7 2 4 5 0 2 2 4 5 3 5 6 1 3 4
PLCP 4 5 4 3 4 5 5 7 6 5 4 3 2 1 2 1 3 2 1 0 0 0

Figure 1 Suffix array, its inverse, Φ, LCP array, and PLCP array of our running example string T .

n contiguous words from or to disk requires scan(n) = Θ(n/B) I/Os. Sorting n contiguous
words requires sort(n) = Θ((n/B) · logM/B(n/B)) I/Os. For realistic values of n, B, and M ,
we stipulate that scan(n) < sort(n)� n.

Text. Let Σ denote an integer alphabet of size σ = |Σ| = nO(1) for a natural number n.
The alphabet Σ induces the lexicographic order ≺ on the set of strings Σ∗. Let |T | denote
the length of a string T ∈ Σ∗. We write T [j] for the j-th character of T , where 1 ≤ j ≤ n.
Given T ∈ Σ∗ consists of the concatenation T = UVW for U, V,W ∈ Σ∗, we call U , V , and
W a prefix, a substring, and a suffix of T , respectively. Given that the substring V starts at
the i-th and ends at the j-th position of T , we also write V = T [i . . j] and W = T [j+ 1. .]. In
the following, we take an element T ∈ Σ∗ with |T | = n, and call it text. We stipulate that T
ends with a sentinel T [n] = $ 6∈ Σ that is lexicographically smaller than every character of Σ.

Text Data Structures. Let SA denote the suffix array [24] of T . The entry SA[i] is
the starting position of the i-th lexicographically smallest suffix such that T [SA[i]. .] ≺
T [SA[i+ 1]. .] for all integers i with 1 ≤ i ≤ n− 1. Let ISA of T be the inverse of SA, i.e.,
ISA[SA[i]] = i for every i with 1 ≤ i ≤ n. The Burrows-Wheeler transform (BWT) [4] of T is
the string BWT with BWT[i] = T [n] if SA[i] = 1 and BWT[i] = T [SA[i]− 1] otherwise, for
every i with 1 ≤ i ≤ n. The LCP array is an array with the property that LCP[i] is the length
of the longest common prefix (LCP) of T [SA[i]. .] and T [SA[i − 1]. .] for i = 2, . . . , n. For
convenience, we stipulate that LCP[1] := 0. The array Φ is defined as Φ[i] := SA[ISA[i]− 1],
and Φ[i] := n in case that ISA[i] = 1. The PLCP array PLCP stores the entries of LCP in
text order, i.e., PLCP[SA[i]] = LCP[i]. Figure 1 illustrates the introduced data structures.

Idea for Using PLCP for Compression. Given a suffix T [i. .] starting at text position i,
PLCP[i] is the length of the longest common prefix of this suffix and the suffix T [Φ[i]. .],
which is its lexicographical predecessor among all suffixes of T . The longest common prefix of
these two suffixes T [i. .] and T [Φ[i]. .] is T [i . . i+ PLCP[i]− 1]. The longest string among all
these longest common prefixes (for each i with 1 ≤ i ≤ n) is one of the longest re-occurring
substrings in the text. Finding this longest re-occurring substring with PLCP and Φ is the
core idea of our compression algorithm. This algorithm produces a bidirectional scheme,
which is defined as follows.

2 Compression Scheme

A bidirectional scheme [29] is defined by a factorization F1 · · ·Fb = T of a text T . A factor Fx
is either a referencing factor or a literal factor. A referencing factor Fx is associated with a
pair (src, `) such that Fx and T [src . . src + `− 1] are two different but possibly overlapping
occurrences of the substring Fx in T . The pair (src, `) and the text position src are called

ESA 2019

41:4 Bidirectional Text Compression in External Memory

.

(R)

(D)

(D)

(D)

(D)

(D)

Figure 2 Visualization of Rules (D) and (R) being applied. Bars represent PLCP values.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
T a b a b b a b a b a b b a b b a a b a b a $
PLCP 4 5 4 3 4 5 5 7 6 5 4 3 2 1 2 1 3 2 1 0 0 0
PLCP1 4 5 4 3 3 2 1 0 0 0 0 0 0 0 2 1 3 2 1 0 0 0
PLCP2 1 0 0 0 0 0 1 0 0 0 0 0 0 0 2 1 3 2 1 0 0 0
PLCP4 1 0 0 0 0 0 1 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0
PLCP3 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3 Step-by-step execution of the plcpcomp compression scheme (see Section 2) on T =
ababbabababbabbaababa$. We overwrite values of PLCP according to Rules (D) and (R). Each row
PLCPi shows PLCP after creating the i-th referencing factor starting at a position whose PLCP
entry is surrounded by a box. Changed entries according to Rules (D) and (R) are underlined.

reference and referred position, respectively. A factorization is cycle-free, i.e., references are
not allowed to have cyclic dependencies. A factorization is called ξ-restricted for an integer
ξ ≥ 2 if each referencing factor Fx is at least ξ characters long (i.e., ` ≥ ξ).

A unidirectional scheme is a special case of a bidirectional scheme, with the restriction
that the referred position of a referencing factor Fx must be smaller than the starting position
of Fx. The most prominent example of a unidirectional scheme is the LZ77 factorization,
whose factorization is usually designed to be 2-restricted.

2.1 Coding
A bidirectional scheme codes the factors by substituting referencing factors with their
associated references while keeping literal factors as strings. By doing so, the coding is a
list whose x-th element is either a string (corresponding to a literal factor) or a reference
representing the x-th factor (1 ≤ x ≤ b), which is referencing.

The plcpcomp scheme and its predecessor, the lcpcomp scheme [6], are bidirectional
schemes. Both schemes are greedy, as they create a referencing factor equal to the longest
re-occurring substring of the text that is not yet part of a factor. They differ in the
selection of such a substring in case that there are multiple candidates with the same
length. The plcpcomp scheme can be computed with a rewritable PLCP array and the
following instructions:
1. Compute the set of candidate positions C := {i | PLCP[i] ≥ PLCP[j] for all text

positions j}.
2. Let dst be the leftmost position of all candidate positions C. Terminate if PLCP[dst] < ξ.
3. Create a referencing factor by replacing T [dst . . dst + PLCP[dst]− 1] with the reference

(Φ[dst], PLCP[dst])
4. Apply the following rules to ensure that we do not create overlapping factors (cf. Figure 2):
(D) Decrease PLCP[j]← min(PLCP[j], dst − j) for every j ∈ [dst − PLCP[dst], dst).
(R) Remove the factored positions by setting PLCP[dst + k] ← 0 for every k ∈ [0,

PLCP[dst]).
5. Recurse with the modified PLCP.

P. Dinklage, J. Ellert, J. Fischer, D. Köppl, and M. Penschuck 41:5

a b a b b a b a b a b b a b b a a b a b a $
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

(12,5)

(1,7)

(20,2)

(19,3)

Coding: a(12,5)b(1,7)(20,2)(19,3)ba$

dst src = Φ[dst] length

8 1 7
2 12 5
17 19 3
15 20 2

Figure 4 Coding of plcpcomp with ξ = 2. The factorization described in Figure 3 computes
four referencing factors, listed in the table on the right. These factors are coded by their references.
The factorization with PLCP in Figure 3 already determines the starting position and the lengths
of all referencing factors (columns “dst” and “length” in the table). The referred positions are
obtained using Φ (column “src”). The figure on the left illustrates factors as boxed substrings
and the references as arrows from the starting positions of referencing factors to their respective
referred positions.

An application of the above instructions on our running example is given in Figure 3. The
coding is visualized in Figure 4. There and in the following figures, we fix ξ := 2.

2.2 Comparison to lcpcomp
The difference to lcpcomp [6] is that we fix dst to be the leftmost of all candidate positions
in C. [6] presented an algorithm computing the lcpcomp scheme in O(n lgn) time with
a heap storing the candidate positions ranked by their PLCP values. We can adapt this
algorithm to compute the plcpcomp scheme by altering the order of the heap to rank the
candidate positions first by their PLCP values (maximal PLCP values first) and second (in
case of equal PLCP values) by their values themselves (minimal text positions first).

Since lcpcomp is cycle-free [6, Lemma 4] regardless of the selection of dst ∈ C, we conclude
that plcpcomp is also cycle-free, i.e., the substitution of substrings by references is reversible.

3 Computing the Factorization without Random Access

In this section, we present an algorithm for computing the plcpcomp scheme, which linearly
scans PLCP without changing its contents. Instead of maintaining a heap storing all text
positions ranked by their PLCP values, we compute the factorization by scanning the
text sequentially from left to right. Although the algorithm will produce the plcpcomp
factorization, it does not compute it in the order explained previously (starting with the
longest factor). Instead, it first determines a subset of those substrings that define a referencing
factor according to the plcpcomp scheme. The starting positions of these substrings have a
PLCP value that is relatively large compared to their neighboring positions. We call those
starting positions peaks.

Formally, we call a text position dst a peak if PLCP[dst] ≥ ξ and one of the following
conditions holds:
1. dst = 1,
2. PLCP[dst − 1] < PLCP[dst],1 or
3. there is a referencing factor ending at dst − 1.

A peak dst is called interesting if there is no text position j with dst ∈ (j, j+PLCP[j]) and
PLCP[j] ≥ PLCP[dst]. An interesting peak dst is called maximal if there is no interesting
peak j with j ∈ (dst, dst + PLCP[dst]).

1 A subset of the so-called irreducible PLCP entries [20, Lemma 4] have this property.

ESA 2019

41:6 Bidirectional Text Compression in External Memory

Algorithm 1 Computation of plcpcomp factors.
1 L← ∅ // Step 1a
2 for dst = 1 to n do // Step 1b
3 if dst is a maximal peak then // Step 2
4 create a referencing factor replacing T [dst . . dst + PLCP[dst]− 1] // Step 3
5 apply Rule (D) to the peaks in L
6 while L contains maximal peaks do
7 j ← rightmost maximal peak in L
8 create referencing factor replacing T [j . . j + PLCP[j]− 1]
9 apply Rules (D) and (R) to the peaks in L

10 remove those elements of L that are no longer interesting peaks
11 dst ← dst + PLCP[dst]
12 if dst is an interesting peak then
13 L← L ∪ {dst}

Given an interesting peak dst, there is no text position j with PLCP[j] ≥ PLCP[dst] that
becomes the starting position of a referencing factor containing T [dst] (such that PLCP[dst]
cannot be removed according to Rule (R)). Given a maximal peak dst, there is additionally
no text position j with PLCP[j] > PLCP[dst] for which we apply Rule (D) on PLCP[dst]
after factorizing T [j . . j + PLCP[j] − 1]. Informally, we can determine whether a peak is
interesting by looking at the PLCP values before this peak, whereas we need to also look
ahead for determining whether a peak is maximal. Given that there is at least one PLCP
entry with a value of at least ξ, we can find a maximal peak, since the leftmost position
min {i ∈ [1 . . n] | PLCP[i] ≥ PLCP[j] for all j with 1 ≤ j ≤ n} among all positions with the
highest PLCP value is a maximal peak. The following lemma states that we can always
factorize the leftmost maximal peak, regardless of whether the text has even higher peaks.

I Lemma 1. If the text position dst is a maximal peak, then T [dst . . dst + PLCP[dst]− 1] is
a referencing factor.

Our preliminary algorithm consists of the following steps:
1. Scan PLCP for the leftmost maximal peak dst.
2. Terminate if no such peak exists.
3. Create the referencing factor T [dst . . dst + PLCP[dst]− 1].
4. Apply Rules (R) and (D).
5. Interpret T [1 . .dst−1] and T [dst +PLCP[dst] . .n] as two independent strings and recurse

on each of them individually.

This algorithm produces the plcpcomp scheme, because
T [dst . . dst + PLCP[dst]− 1] is a referencing factor for each selected leftmost maximal
peak dst according to Lemma 1, and
the part T [1 . . dst − 1] can be factorized independently from how T [dst + PLCP[dst]. .] is
factorized, and vice versa. That is because, having already T [dst . . dst + PLCP[dst]− 1]
factorized, we can no longer create a factor that covers a text position in the range [dst . .
dst + PLCP[dst]− 1].

Hence, we can factorize T [1 . . dst − 1] without considering the factorization of the rest of the
text to produce the correct plcpcomp scheme. Figure 5 illustrates the computation of the
plcpcomp factorization with this algorithm.

However, as the algorithm overwrites entries of PLCP, it is not yet satisfying. A rewritable
PLCP array would have to be kept in RAM, costing us n lgn bits of space if we require
constant time read and write access. Instead of keeping PLCP[1 . . dst − 1] in RAM, we now

P. Dinklage, J. Ellert, J. Fischer, D. Köppl, and M. Penschuck 41:7

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
T a b a b b a b a b a b b a b b a a b a b a $
PLCP 4 5 4 3 4 5 5 7 6 5 4 3 2 1 2 1 3 2 1 0 0 0
PLCP1 1 0 0 0 0 0 5 7 6 5 4 3 2 1 2 1 3 2 1 0 0 0
PLCP1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 2 1 3 2 1 0 0 0
PLCP2 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 3 2 1 0 0 0
PLCP3 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5 Step-by-step execution of our plcpcomp algorithm on T = ababbabababbabbaababa$.
While the instructions of the scheme (cf. Section 2) always replace the factor starting at a position
with the maximal PLCP value (cf. Figure 3), our algorithm described in Section 3 creates a factor
at the leftmost maximal peak. Our algorithm computes the same factorization as described in the
plcpcomp scheme, but in different order.

show that it suffices to manage only the PLCP values of the interesting peaks. For that, we
enhance the search of the leftmost maximal peak by replacing the first step of the algorithm
by the following instructions:
1a. Create an empty list of peaks L.
1b. Scan T from left to right until a maximal peak dst is found. While doing so, insert all

visited interesting peaks into L.
Another alternation is that we apply Step 4 only to the peaks stored in L. There, we scan
L from right to left while applying Rule (D) and removing all elements that are no longer
interesting peaks. The modified algorithm is sketched as pseudo code in Algo. 1.

I Example 2. Figure 6 illustrates Algo. 1 on the prefix T [1 . . 14] = ababbabababbab of our
running example in three steps. The peaks at positions 1 and 2 are interesting. Since the
peak at position 2 is the highest interesting peak, it is the maximal peak, which is detected
after scanning PLCP[1 . . 6] (Figure 6a). In the second step (Figure 6b), the referencing
factor F1 is introduced, which starts at this maximal peak. As a consequence, Rule (D) is
applied to the only peak stored in L, the one at position 1. However, because the PLCP
value 1 is below the threshold ξ = 2, the peak at position 1 is removed from L. Since L is
then empty, we proceed with the next scan for a maximal peak starting from position 7. By
definition, the peak at position 7 becomes interesting. The next maximal peak is detected at
position 8 (Figure 6c). The factor F2 (Figure 6d) is introduced, and Rule (D) is applied to
the peak at position 7. Its PLCP value drops below our threshold and thus it is removed
from L. Finally, the prefix T [1 . . 14] has been processed.

In Algo. 1, we omit all other peaks that are not stored in L when applying Rules (D)
and (R)). Thus, it suffices to maintain the PLCP value of each peak in L in an extra list
instead of maintaining a complete rewritable PLCP array. In the following, we prove why
this omission still produces the correct factorization (Lemma 5). For that, we show that
we can produce the plcpcomp factors contained in T [1 . . dst + PLCP[dst] − 1] only with
the PLCP values of the peaks stored in L (first recursive call). We start with the following
property of L:

I Lemma 3. The positions stored in L are in strictly ascending order with respect to their
LCP values.

Next, we examine the result of creating the referencing factor T [dst . . dst + PLCP[dst]− 1]
starting at the maximal peak dst. After creating this factor, the PLCP values of peaks near
dst can be decreased. However, this causes at most one new peak as can be seen by the
following lemma.

ESA 2019

41:8 Bidirectional Text Compression in External Memory

1 2 3 4 5 6 7 8 9 10 11 12 13 14

a b a b b a b a b a b b a bT

i

4

5

4

3

4

5 5

7

6

5

4

3

2

1

(a) A maximal peak has been detected at i = 2,
an interesting peak is at i = 1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

a b a b b a b a b a b b a bT

i

1

(D)

F1

5

7

6

5

4

3

2

1

(b) The referencing factor F1 is introduced and
Rule (D) is applied to the peak at i = 1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

a b a b b a b a b a b b a bT

i

F1

5

7

6

5

4

3

2

1

(c) A maximal peak has been detected at i = 8,
an interesting peak is at i = 7.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

a b a b b a b a b a b b a bT

i

F1

1

(D)

F2

(d) The referencing factor F2 is introduced and
Rule (D) is applied to the peak at i = 7.

Figure 6 Execution of our algorithm of Section 3 computing the plcpcomp compression scheme
on T = ababbabababbabbaababa$. Due to limited space, we only illustrate the processing of the
prefix T [1 . . 14] in three steps (explained in Example 2). The vertical bars represent the PLCP
array, with the corresponding values written above, in text order from left (i = 1) to right (i = 14).
The shaded vertical bars represent the (current) PLCP value of an interesting peak. Horizontal
bars represent (referencing) factors. In (b), the factor F1, starting at position 2, is displayed as the
maximal peak being tipped over to the right.

I Lemma 4. Applying Rules (D) and (R) after creating a referencing factor Fx does not
cause new peaks, with the only possible exception of the position succeeding the end of Fx.

Since Rule (D) decreases at most the values of PLCP[dst − PLCP[dst] . . dst − 1], the
highest peak dst′ in PLCP[1 . . dst − 1] is an interesting peak that is either

in the interval [dst − PLCP[dst] . . dst − 1], or,
in the case that all interesting peaks in [dst−PLCP[dst] . .dst−1] are no longer interesting
after decreasing their PLCP values, the rightmost peak preceding dst−PLCP[dst] (whose
PLCP value is equal to the PLCP value of the last peak removed from L in Step 4).

We can locate dst′ while applying Rule (D) as a result of creating the factor starting at dst.
After locating dst′, we apply the following steps recursively:
1. Substitute T [dst′ . . PLCP[dst′] − 1] with a reference, because it is the highest peak in

T [1 . . dst − 1].
2. If dst′′ := dst′ + PLCP[dst′] with PLCP[dst′′] ≥ ξ was not a peak, then dst′′ becomes an

interesting peak. In this case, substitute dst′ with dst′′ in L to preserve the order in L.
Otherwise, remove dst′ from L.

3. Split L into two sub-lists:
one containing text positions of the range [1 . . dst′ − 1], and
the other containing text positions of the range [dst′ + PLCP[dst′] . . dst − 1].

4. Recurse on each of the two sub-lists, i.e., find the highest peak in each sub-list and
substitute it.

This recursion is more efficient than the while-loop described in Lines 6 to 10 of Algo. 1.

I Lemma 5. The algorithm emits a valid plcpcomp factorization of T [1. .dst+PLCP[dst]−1].

P. Dinklage, J. Ellert, J. Fischer, D. Köppl, and M. Penschuck 41:9

a b a b b a b a b a b b a b b a a b a b a $
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

a b a b b a b a b a b b a b b a a b a b a $
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

20155122 20
1512

52

Figure 7 Pointer jumping applied to references. Suppose that our example text is represented by
the coding described in Figure 4. To extract the character T [2], we need to resolve the reference (12, 5),
which has a depth of three (bottom left figure). In case that we split all references into references
of length one, we can reduce the depth of the reference associated with T [2] by pointer jumping
(right figure). The order in which this technique is applied to the references has an impact on the
resulting references. Here, we assumed that we can apply this technique in parallel.

After factorizing T [1 . . dst + PLCP[dst]− 1], we proceed with Algo. 1 on the remaining text
T [dst + PLCP[dst]. .] to compute the factorization of the entire text. It is left to explain how
this algorithm can be adapted to the EM model efficiently.

3.1 Factorization in External Memory
Having the text, PLCP, and Φ stored as files in EM, we can compute the plcpcomp scheme
in three sequential scans over n tuples and one sort operation:
1. Proceed with Algo. 1 to find pairs (dst, ` = PLCP[dst]) representing referencing factors

T [dst . . dst + `] by scanning PLCP.
2. Sort these pairs in ascending order of their dst components (i.e., in text order).
3. Simultaneously scan this sorted list of pairs and Φ to compute triplets of the form

(dst, src = Φ[dst], `), where the second component is the referred position of the referencing
factor T [dst . . dst + `− 1].

4. Finally, scan simultaneously the list of references and T to replace each substring T [dst . .
dst + `− 1] by the reference (src, `) on reading the triplet (dst, src, `).

The pairs emitted during the PLCP scan (Step 1) can be stored and then sorted in EM.
The references computed by the second scan can be written to disk for the final scan, which
computes the plcpcomp scheme of T sequentially. By doing so, no random access is required
on the list of references.

During the PLCP scan, the list L can also be maintained on disk efficiently: until a
maximal peak is found, we only append peaks to L. For our experiments, we store L in
RAM, as the number of elements was much lower than the upper bound O(min(

√
n lgn, r))

where r is the number of BWT runs (see the full version of this paper).
Once a maximal peak dst has been found and a reference (dst, `) is emitted, we scan over

L sequentially (a) to apply Rules (D) and (R) and (b) to find a remaining maximal peak, if
any, in the process. We then repeat this process until there are no more maximal peaks in
L. In practice, we scan the last elements of L linearly from right to left, since only the last
interesting peaks need to be updated.

4 Decompression

The task of decompressing a bidirectional scheme is to resolve each reference (srci, `i) of a
referencing factor T [dsti . .dsti+ `i−1], i.e., to copy the characters from T [srci . . srci+ `i−1]
to T [dsti . . dsti + `i − 1].

ESA 2019

41:10 Bidirectional Text Compression in External Memory

Figure 8 The dependency graph (left) and its EM representation (right) of the factorization given
in Figure 4. The multi-dependent factors of length seven and five have a cyclic dependency. The EM
representation of the graph described in Section 4 consists of two copies of the list of all referencing
factors, sorted by their source position (top) as well as sorted by their destination (bottom).

A unidirectional scheme can be decompressed by scanning linearly over the compressed
input from left to right. In that scenario, references can be resolved easily because they
always refer to already decompressed parts of the text [2]. This property does not hold for
a bidirectional scheme in general, as a reference can refer to a part of the text that again
corresponds to a reference.

I Definition 6 (Dependency Graph). Given a bidirectional factorization F1 · · ·Fb = T , we
model its references as a directed graph G with V = {v1, . . . , vb} such that there is a 1-to-1
correlation between nodes vi and factors Fi. We add a directed edge (vi, vj) from vi to vj
with i 6= j iff Fi refers to at least one character in the factor Fj.We put these edges into a
set E to form a graph G := (V,E) that has only literal factors as sinks. A node vi can have
more than one out-going edge if the referred substring is covered by multiple factors; in this
case, we say vi is multi-dependent and call the set of its out-going edges a multi-dependency.
The dependency graph of our example from Figure 4 can be seen in Figure 8.

Bidirectional decompressors face two challenges arising from this graph structure:
The existence of multi-dependent nodes disallows efficient tree-based approaches.
Long dependency chains may affect the time and space complexity of decompression.

Our compression scheme splits multi-dependencies into single dependencies and deploys
the pointer jumping technique [14, Sect. 2.2] for dependency resolution. After the resolution
we obtain a dependency graph in which each reference is single-dependent on a literal factor.
Then the text can be trivially recovered with sort(n) I/Os. The details are as follows.

Let G be the dependency graph of the factorization T = F1 · · ·Fb. For now we assume
that all factors are single-dependent, i.e., each node v representing a referencing factor has
exactly one outgoing edge (v, p(v)). For all other nodes (representing literal factors) we define
p(v) := v. Clearly, G forms a forest in which each tree is rooted in a literal factor. When
applying the pointer jumping technique, we take each referencing factor and attach it to the
parent of its parent (cf. Figure 7). Given that G′ is the resulting graph with p′(v) = p(p(v)),
we thereby halve the depth, i.e., d(G′) = dd(G)/2e if d(G) ≥ 2, where d(G) denotes the
maximum depth of a tree in G. Hence, after Θ(lg d(G)) iterations all indirect references are
resolved and have been replaced by direct references to literal factors.

If we allow multi-dependencies, pointer jumping is only possible for single-dependent
nodes. To apply pointer jumping, we split each multi-dependent reference into the smallest
possible set of single-dependent references. A split is introduced ad-hoc each time it is
required for a pointer jump. The details of the splitting are discussed in the full version
of this paper.

We first construct a representation of the dependency graph consisting of two EM vectors
called requests and factors. Intuitively, each request (child) sends a request message to
the first factor it refers to (parent). Addressing is implemented indirectly in terms of

P. Dinklage, J. Ellert, J. Fischer, D. Köppl, and M. Penschuck 41:11

a b a b b a b a b a b b a b b a a b a b a $
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

(1,7)

(5,3)

(20,2) (19,3)

(20,2)

a b a b b a b a b a b b a b b a a b a b a $
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

(1,1)

(5,3)

(20,2)
(7,1)

(5,3)

(20,2) (19,3)

(20,2)

Figure 9 Split-Strategy of EM-PJ applied to the first (left figure) and second (right figure)
referencing factor of the factorization given in Figure 4. EM-PJ splits up references in a minimal
number of sub-references on which the pointer jumping technique can be applied. The left figure
shows such an application to the reference of the leftmost referencing factor that is split into two
sub-references. The first and second sub-reference receive new referred positions based on the
referred positions of the second and third referencing factors, respectively. In the right figure, we
split up the next reference (1, 7) in four sub-references, where the first and last sub-reference refer to
literal factors.

text positions rather than factor indices. For each reference (src, `) corresponding to a
factor Fi = T [dst . . dst + `− 1], we push 〈dst, `, src〉 into requests and 〈src, `, dst〉 into factors.
We omit literal factors, since the lack of a reference in factors for a certain text position
indicates the presence of a literal factor.

Subsequently, we sort2 both vectors independently, bringing the messages in requests and
the recipients in factors into the same order. On the right side of Figure 8 we see a visualization
of the lists (after the initial sorting) for our running example. We augment requests with
an initially empty EM priority queue PQSplit. In the following, after processing a factor Fi,
we write Fi either to a vector result if it refers to literal factors, or to a vector nextRequests
otherwise: Let 〈dst, `, src〉 be the smallest unprocessed request of a factor Fi received via
requests or PQSplit. If it originates from requests, we advance requests’s read pointer for the
next iteration, otherwise we dequeue the top element from PQSplit. We process the read
request 〈dst, `, src〉 depending on the following cases (cf. Figure 9):

Jump The request is completely covered by parent Fj in factors. In this case, we substitute
Fi’s reference according to Fj and push it into nextRequests to be processed in the next
iteration.
Finalize No parent (partially) overlapping with Fi is available in factors. Then we know
that Fi points to a substring contained in literal factors. We finalize Fi by pushing it
into result.
Split A prefix of Fi is contained in the parent Fj or points to literals. Let `′ < ` be the
length of the longest such prefix. Then split Fi into a prefix FP

i of length `′ and a suffix
F S
i of length `− `′. By construction, either case “Jump” or case “Finalize” is applicable

to FP
i , and we execute it directly. Then we push 〈src+`′, `−`′, dst + `′〉 representing F S

i

into PQSplit to process it later within the same iteration. Observe that Fi can be split
multiple times during the same iteration.

If nextRequests is not empty, we sort it and recurse by processing nextRequests and the
(unaltered) factors simultaneously as before. With these steps, we obtain the final result:

I Theorem 7. Let F1 · · ·Fb = T be a ξ-restricted bidirectional scheme, and d(G) < b be the
depth of T ’s dependency graph G. Then EM-PJ requires O(lg (d(G)) sort(n/ξ)) I/Os.

2 To sort tuples we always use lexicographic order, i.e., we order tuples by their first unequal elements.

ESA 2019

41:12 Bidirectional Text Compression in External Memory

Table 1 Empirical entropies of our data sets. The alphabet sizes of all instances are 242 and 4
for commoncrawl and dna, respectively.

commoncrawl
prefix length H0 H1 H2 H3 H4 H5 H6 H7

16 GiB 5.99165 4.26109 3.48920 2.94113 2.42738 2.01886 1.64558 1.35130
32 GiB 5.99145 4.26160 3.49006 2.94411 2.43471 2.03284 1.66737 1.37798
64 GiB 5.99119 4.26209 3.49100 2.94669 2.44088 2.04409 1.68482 1.40001

128 GiB 5.99177 4.26148 3.49055 2.94684 2.44231 2.04753 1.69087 1.40839

dna
prefix length H0 H1 H2 H3 H4 H5 H6 H7

16 GiB 1.9715 1.94676 1.93166 1.92232 1.91167 1.89491 1.87101 1.84585
32 GiB 1.97128 1.94561 1.93201 1.92421 1.91507 1.90190 1.88270 1.86160
64 GiB 1.97067 1.94506 1.93145 1.92424 1.91588 1.90445 1.88763 1.86889

128 GiB 1.97528 1.95010 1.93873 1.93273 1.92486 1.91341 1.89601 1.87634

5 Practical Evaluation

Experimental Setup. Our experiments are conducted on a machine with 16 GiB of RAM3,
eight Hitachi HUA72302 hard drives with 1.8 TiB, two Samsung SSD 850 SSDs with 465.8
GiB, and an Intel Xeon CPU i7-6800K. The operating system is a 64-bit version of Ubuntu
Linux 16.04. We implemented plcpcomp4 in the version 1.4.99 (development snapshot) of
the STXXL library [5]. We compiled the source code with the GNU g++ 7.4 compiler.

Text Collections. We conduct our experiments on two texts of different alphabet sizes and
repetitiveness (cf. Table 1):

commoncrawl: A crawl of web pages with an alphabet size of 242 collected by the
commoncrawl organization.
dna: DNA sequences with an alphabet size of 4 extracted from FASTA files.

Algorithms. We compare plcpcomp against EM-LPF [17] by Kärkkäinen et al., which is an
EM algorithm computing the LZ77 factorization by constructing the LPF array. In addition
to the input text, it requires SA and LCP.

In early experiments with EM-LZscan [17], it became clear that its throughput on the text
collection we use is nowhere near competitiveness with EM-LPF and plcpcomp. Therefore,
it is not considered in our experiments. Semi-external LZ77 algorithms like SE-KKP [17]
storing the text or parts of the text in RAM have not been considered.

Data Structures. Currently, the fastest way to compute the data structures PLCP and Φ in
EM is to compute BWT from SA with the parallel EM algorithm pEM-BWT by Kärkkäinen
and Kempa5, and use it for computing PLCP with the parallel EM construction algorithm
of [16]. We modified the source code of the latter to also produce Φ as a side product.

3 In order to avoid swapping, each experiment was conducted with a limit of 14 GiB of RAM.
4 Available at https://github.com/tudocomp/tudocomp.
5 https://www.cs.helsinki.fi/u/dkempa/pem_bwt.html

https://github.com/tudocomp/tudocomp
https://www.cs.helsinki.fi/u/dkempa/pem_bwt.html

P. Dinklage, J. Ellert, J. Fischer, D. Köppl, and M. Penschuck 41:13

1632 64 128

20

40

D
N

A

T
hr
ou

gh
pu

t
[G

iB
/
h] Throughput

1632 64 128

0

0.5

1

1.5

2

M
ax

D
is
k
U
se

[T
iB
] Maximum Disk Use

1632 64 128

2

4

6

·109

#
Fa

ct
or
s

Factors

1632 64 128

2

4

6
·109

#
R
ef
.
Fa

ct
or
s

Referencing Factors

1632 64 128
0

50

100

150

Input size [GiB]

C
O

M
M

O
N

C
R

A
W

L

T
hr
ou

gh
pu

t
[G

iB
/
h]

1632 64 128

0

0.5

1

1.5

2

Input size [GiB]

M
ax

D
is
k
U
se

[T
iB
]

1632 64 128

1

2

·109

Input size (GiB)

#
Fa

ct
or
s

1632 64 128

1

2

·109

Input size [GiB]

#
R
ef
.
Fa

ct
or
s

Figure 10 Performance with different prefix lengths. EM-LPF plcpcomp

For EM-LPF, we additionally need to convert PLCP to LCP by a scan over SA and a
subsequent sort step. This is currently the fastest approach for obtaining LCP, as other
approaches building LCP directly from SA like [15] are slower.

Consequently, both contestants need (directly or indirectly) SA. However, it takes a
considerable amount of time to construct it with EM algorithms on a single machine (e.g.,
with pSAScan [18]). To put the focus on the comparison between EM-LPF and plcpcomp,
we do not take into account the construction of SA and LCP when measuring running times.

Measurements and Results. Our experiments measure the throughput, the maximum hard
disk usage, and the number of referencing factors, for EM-LPF and plcpcomp for 2kGiB
prefixes (4 ≤ k ≤ 7) of our data sets dna and commoncrawl. We collected the median
of three iterations and present the results in Figure 10. The plots show that plcpcomp is
magnitudes faster on both data sets (cf. plots “Throughput”). The reason for this could
be that the disk accesses of EM-LPF scale much worse than those of plcpcomp (cf. plots
“Maximum Disk Use”). We point out that plcpcomp is already faster than the step for
computing LCP from PLCP and SA. Regarding the number of factors, plcpcomp is on
par with LZ77 (rightmost plots), producing, relatively speaking, slightly more factors. Our
decompression requires multiple sorts of factor sets depending on the maximum depth of (a
tree in) the dependency graph induced by the factorization. Therefore, it is not surprising
that it is a lot slower than the comparatively simple compression.

Furthermore, and for the same reason, our decompression expectedly runs orders of
magnitudes slower than the external memory Lempel-Ziv decoder of [2], which is why we do
not do a more detailed performance comparison here.

Decompression. We ran our decompressor implementation on the plcpcomp codings of
our datasets. Plots of the scaling experiments are shown in Figure 11. As the decom-
pression algorithm is superlinear, the throughput is decreasing with increasing text size.
However, comparing the results for the 32GiB and 64GiB commoncrawl decompression, the
throughput only decreases by 1%. The throughput between the 32GiB and 64 GiB DNA
decompression differs by only 5%. The maximum external memory allocation rises linearly
with increasing text size.

ESA 2019

41:14 Bidirectional Text Compression in External Memory

16 32 64

1.04

1.06

1.08

1.1

Original input size [GiB]

D
N

A

T
hr
ou

gh
pu

t
[G

iB
/
h] Throughput

1 2 3

·109

6

6.5

7

·107

FactorsT
hr
ou

gh
pu

t
[#

Fa
ct
or
s
/
h]

Throughput

16 32 64

1

2

3

Original input size [GiB]

M
ax

D
is
k
U
se

[T
iB
] Maximum Disk Use

16 32 64
1.61

1.61

1.62

1.62

Original input size [GiB]

C
O

M
M

O
N

C
R

A
W

L

T
hr
ou

gh
pu

t
[G

iB
/
h]

1 1.5

·109

5

5.5

6

·107

FactorsT
hr
ou

gh
pu

t
[#

Fa
ct
or
s
/
h]

16 32 64
0.5

1

1.5

2

2.5

Original input size [GiB]

M
ax

D
is
k
U
se

[T
iB
]

Figure 11 Performance of the decompression with different prefix lengths.

18 20 22

45

50

55

60

ξ

D
N

A

T
hr
ou

gh
pu

t
[G

iB
/
h] ξ → Throughput

18 20 22

20

40

60

ξ

M
ax

D
is
k
U
se

[G
iB
] ξ → Max Disk Use

18 20 22

1

2

3

·1010

ξ

#
Fa

ct
or
s

ξ → Factors

18 20 22

1

2

·109

ξ

#
R
ef
er
en

ci
ng

Fa
ct
or
s ξ → Ref. Factors

4 6 8

100

110

120

130

ξ

C
O

M
M

O
N

C
R

A
W

L

T
hr
ou

gh
pu

t
[G

iB
/
h] ξ → Throughput

4 6 8

10

20

30

40

50

ξ

M
ax

D
is
k
U
se

[G
iB
] ξ → Max Disk Use

4 6 8

1

2

3

·109

ξ

#
Fa

ct
or
s

ξ → Factors

4 6 8

0.5

1

1.5

·109

ξ

#
R
ef
er
en

ci
ng

Fa
ct
or
s ξ → Ref. Factors

16 GiB input size
32 GiB input size
64 GiB input size

Figure 12 Evaluation of plcpcomp with different threshold values ξ.

P. Dinklage, J. Ellert, J. Fischer, D. Köppl, and M. Penschuck 41:15

In Figure 12, we measured the impact of the choice of ξ on the compressed output and
the decompression algorithm of our datasets. For larger values of ξ, plcpcomp creates less
referencing factors, but the total number of factors increases (as we obtain much more literal
factors). Having less referencing factors, the decompression needs less disk space.

Our decompression requires multiple sorting steps on the factor lists such as requests
(cf. Section 4). The number of these steps depend on the maximum depth of (a tree in)
the dependency graph induced by the factorization. Therefore, it is not surprising that the
decompressor is magnitudes slower than the comparatively simple compression algorithm.

Furthermore, and for the same reason, our decompression (expectedly) runs slower than
the external memory Lempel-Ziv decoder of [2], which is why we skip a more detailed
performance comparison here.

6 Conclusions

We presented plcpcomp, the first external memory bidirectional compression algorithm, and
showed its practicality by performing experiments on very large data sets, using only very
limited RAM. We also presented a decompression algorithm in external memory, which can
decode the output of any bidirectional compression scheme (not only plcpcomp). Possible
future steps include relating the number of factors of plcpcomp to the minimal number of
factors in a bi- or unidirectional compression scheme, evaluating the whole compression chain
by also experimenting on codings of the output of plcpcomp (similar to [6]), and improving
the performance of the decompression algorithm.

References
1 Alok Aggarwal and Jeffrey Scott Vitter. The Input/Output Complexity of Sorting and Related

Problems. Commun. ACM, 31(9):1116–1127, 1988.
2 Djamal Belazzougui, Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Lempel-Ziv

decoding in external memory. In Proc. SEA, volume 9685 of LNCS, pages 63–74, 2016.
3 Timothy C. Bell. Better OPM/L Text Compression. IEEE Trans. Communications,

34(12):1176–1182, 1986.
4 M. Burrows and D. J. Wheeler. A block sorting lossless data compression algorithm. Technical

Report 124, Digital Equipment Corporation, Palo Alto, California, 1994.
5 Roman Dementiev, Lutz Kettner, and Peter Sanders. STXXL: standard template library for

XXL data sets. Softw., Pract. Exper., 38(6):589–637, 2008.
6 Patrick Dinklage, Johannes Fischer, Dominik Köppl, Marvin Löbel, and Kunihiko Sadakane.

Compression with the tudocomp Framework. In Proc. SEA, volume 75 of LIPIcs, pages
13:1–13:22, 2017. arXiv:1702.07577.

7 Paolo Ferragina, Travis Gagie, and Giovanni Manzini. Lightweight Data Indexing and
Compression in External Memory. Algorithmica, 63(3):707–730, 2012.

8 Paolo Ferragina, Igor Nitto, and Rossano Venturini. On the Bit-Complexity of Lempel-Ziv
Compression. SIAM J. Comput., 42(4):1521–1541, 2013.

9 Johannes Fischer, Tomohiro I, Dominik Köppl, and Kunihiko Sadakane. Lempel-Ziv Factor-
ization Powered by Space Efficient Suffix Trees. Algorithmica, 80(7):2048–2081, 2018.

10 Travis Gagie, Gonzalo Navarro, and Nicola Prezza. On the Approximation Ratio of Lempel-Ziv
Parsing. In Proc. LATIN, volume 10807 of LNCS, pages 490–503, 2018.

11 J. K. Gallant. String compression algorithms. PhD thesis, Princeton University, 1982.
12 Keisuke Goto and Hideo Bannai. Simpler and Faster Lempel Ziv Factorization. In Proc. DCC,

pages 133–142, 2013.
13 Keisuke Goto and Hideo Bannai. Space Efficient Linear Time Lempel-Ziv Factorization for

Small Alphabets. In Proc. DCC, pages 163–172, 2014.

ESA 2019

http://arxiv.org/abs/1702.07577

41:16 Bidirectional Text Compression in External Memory

14 Joseph JáJá. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.
15 Juha Kärkkäinen and Dominik Kempa. LCP array construction in external memory. ACM

Journal of Experimental Algorithmics, 21(1):1.7:1–1.7:22, 2016.
16 Juha Kärkkäinen and Dominik Kempa. Engineering External Memory LCP Array Construction:

Parallel, In-Place and Large Alphabet. In Proc. SEA, volume 75 of LIPIcs, pages 17:1–17:14,
2017.

17 Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Lempel-Ziv parsing in external
memory. In Proc. DCC, pages 153–162, 2014.

18 Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Parallel External Memory Suffix
Sorting. In Proc. CPM, volume 9133 of LNCS, pages 329–342, 2015.

19 Juha Kärkkäinen, Dominik Kempa, and Simon John Puglisi. Lightweight Lempel-Ziv Parsing.
In Proc. SEA, volume 7933 of LNCS, pages 139–150. Springer, 2013.

20 Juha Kärkkäinen, Giovanni Manzini, and Simon J. Puglisi. Permuted Longest-Common-Prefix
Array. In Proc. CPM, volume 5577 of LNCS, pages 181–192, 2009.

21 Dominik Kempa and Dmitry Kosolobov. LZ-end parsing in compressed space. In Proc. DCC,
pages 350–359, 2017.

22 Dominik Kempa and Nicola Prezza. At the roots of dictionary compression: string attractors.
In Proc. STOC, pages 827–840, 2018.

23 Sebastian Kreft and Gonzalo Navarro. LZ77-like compression with fast random access. In
Proc. DCC, pages 239–248, 2010.

24 Udi Manber and Eugene W. Myers. Suffix Arrays: A New Method for On-Line String Searches.
SIAM J. Comput., 22(5):935–948, 1993.

25 Markus Mauer, Timo Beller, and Enno Ohlebusch. A Lempel-Ziv-style Compression Method
for Repetitive Texts. In Proc. PSC, pages 96–107, 2017.

26 Ryosuke Nakamura, Shunsuke Inenaga, Hideo Bannai, Takashi Funamoto, Masayuki Takeda,
and Ayumi Shinohara. Linear-Time Text Compression by Longest-First Substitution. Algo-
rithms, 2(4):1429–1448, 2009.

27 Akihiro Nishi, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
O(n logn)-time text compression by LZ-style longest first substitution. In Proc. PSC, pages
12–26, 2018.

28 Takaaki Nishimoto and Yasuo Tabei. LZRR: LZ77 parsing with right reference. arXiv
1812.04261, 2018. arXiv:1812.04261.

29 James A. Storer and Thomas G. Szymanski. Data compression via textural substitution. J.
ACM, 29(4):928–951, 1982.

30 Vladimir Yanovsky. ReCoil - an algorithm for compression of extremely large datasets of DNA
data. Algorithms for Molecular Biology, 6(23):1–9, 2011.

http://arxiv.org/abs/1812.04261

	Introduction
	Related Work
	Bidirectional Schemes
	EM Compression Algorithms

	Preliminaries

	Compression Scheme
	Coding
	Comparison to lcpcomp

	Computing the Factorization without Random Access
	Factorization in External Memory

	Decompression
	Practical Evaluation
	Conclusions

