
Integrated Diagnostics Design

Andreas Dinklage

Max-Planck-Institut für Plasmaphysik, EURATOM Association,

Wendelsteinstraße 1, 17491 Greifswald, Germany

Phone: (+49) 3834 88 2328

Fax: (+49) 3834 88 2005

E-mail: dinklage@ipp.mpg.de

Rainer Fischer

Max-Planck-Institut für Plasmaphysik, EURATOM Association,

Boltzmannstraße 2, 85748 Garching, Germany

and Robert Wolf

Max-Planck-Institut für Plasmaphysik, EURATOM Association,

Wendelsteinstraße 1, 17491 Greifswald, Germany

Total Number of Pages: 22

Total Number of Figures: 5

Please reproduce the color figures as b/w figures.

Manuscript Accepted: Jun. 24, 2012

by Fusion Science and Technology, MS #12-482

Dated: Jul. 02, 2012

1



Integrated Diagnostics Design

Andreas Dinklage, Rainer Fischer, and Robert Wolf

Abstract

A new concept for the design of diagnostics for fusion devices is introduced. The concept is based on

the combination of sets of different diagnostics to an integrated meta-diagnostic. The approach applies

methods from Bayesian Experimental Design and allows for quantitative assessments of differing meta-

diagnostics. A specific example is the combination of interferometry and Thomson scattering data to discuss

the capabilities of the proposed method. The approach is also to discuss minimum sets of diagnostics

required to determine physics quantities with a given accuracy. This is relevant, e.g. for the control of

reactor relevant scenarios such as in DEMO.
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I. MOTIVATION

What is the value of a measurement? How should experiments be planned to optimize its

outcome? In statistics, these issues give rise for a field of its own known as experimental design.

There are plenty of statistical applications depending on methods to optimize information gains,

e.g. clinical trials. But also in experimental science, there is obvious evidence that changing the

settings of measurements can improve the outcome of an inference process.

Without any attempt for a deeper discussion, nuclear fusion experiments can be said to be much

less statistical investigations rather than physics goal oriented experiments. A fusion experiment

is usually performed to assess the validity of physics prediction or - in exploratory phases - to in-

vestigate novelties. The validity assessments are made to provide a physics basis for extrapolation

of present day devices to future power plants which have the clear requirement to produce energy

economically. Therefore, fusion experiments must ultimately go along with an improvement of the

physical basis of a - generally speaking - complex, self-organized system affected by the interplay

non-linear effects.

Consequently, the planning of fusion experiments is highly complicated and the planning of

measurements (or diagnostics) is complicated as well. There are a couple of mutually amplifying

reasons: a validated physics basis in fusion science require typically a set of different diagnostics

and physical information. To give an example, transport analyses may employ kinetic measure-

ments for the temporal and spatial variation of the electron and ion temperatures and densities

along with measurements of the radial electric field. Physics knowledge coming into play are

coordinate transformation of spatial dependencies inevitably needed to be involved in the infer-

ence to determine physical quantities, e.g. figures of merit for the energy confinement such as the

energy confinement time or heat fluxes.

These fusion specific complications require scientific approaches for the planning task known

in other fields of science as data fusion; see e.g. [1]. Comparing fusion to other fields like robotics

or geospatial data analysis, fusion needs to cope with involved multi-scale problems (space: gyro

radius to device dimensions, time: inverse growth rate of instabilities to L/R-times (L: plasma

inductance, R: plasma resistance) of current relaxation up to thermal equilibration times of the

plasma wall interaction). Moreover, given the target of reactor operation, fusion science is to

prove the validity of predictive models to extrapolate present day findings to reactor scale devices.

And experimental fusion science needs to link uncertain information from uncertain data and must
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employ physical models to perform the linkage. Hence, from a formal point of view, the anal-

ysis process may be considered as the combination of heterogenous, noisy sources of uncertain

information along with the validity assessments of physical models. To resolve this problem, the

concept of Integrated Data Analysis (IDA) [2–4] has been introduced for the joint interpretation

of fusion diagnostics. IDA has successfully proven its capabilities to link experimental data and

physical information in different fusion devices [5–8].

For this paper, it is worthwhile to reflect the basic concepts of IDA employed for data analysis

before we introduce the design concept used here. The ultimate goal of IDA is to improve the

quality of the inference process both by the inclusion of physical knowledge and by data pooling

on the level of measured data. This is different to conventional approaches: usually, physics

quantities from different measurements are combined on a level of analyzed quantities. To give an

example, the conventional approach is to combine, e.g., reflectometry, lithium beam and Thomson

scattering measurements by a combination of analyzed density profiles of each individual diag-

nostics. Differently, IDA attempts to find a most probable joint density profile being compliant

with all data and physics assumptions required to link the data.

The benefit of IDA lies in the systematic use of correlations and interdependencies. This

becomes apparent in cases for which the result depends on other quantities, e.g. in Thomson

scattering the signal depends both on the electron density and the electron temperature. If one

imposes additional information on the electron temperature, e.g. by measurements of the electron

cyclotron emission, also the joint measurement of the density is affected, i.e. the uncertainty of

the density measurement is potentially reduced [2]. As a probabilistic method, IDA relies on

Bayesian inference, for a recent overview on Bayesian analysis in physical sciences see [9]. IDA

employs the Bayesian interpretation of probability theory, i.e. the inference process may use in-

complete knowledge which is encoded in probability density functions; the extent of which reflect

the uncertainty on a parameter and the dimensionality of a probability density function reflects

the number of uncertain quantities. Since all information can be employed, IDA has an enormous

flexibility: although making potentially largest benefit by combining the measurements on a raw

data level, also intermediate steps of integration involving separately analyzed data may turn out

to improve the overall outcome. In terms of IDA, these intermediate results are interpreted as

additional physical information.
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Getting back to the initial question of planning measurements, this paper is to discuss the con-

cept of a concise combination of measurements and physical information for the design of future

diagnostics. The basic idea follows the line of IDA: rather than combining separate diagnostics

units, an Integrated Diagnostics Design (IDD) is to combine all possible measurements. We call

the overall set of diagnostics a meta-diagnostic. In this sense, IDD applies the philosophy of data

pooling for the design of experimental set-ups. Again, to explicitly distinguish IDD from IDA,

IDA is a method for the analysis of data whereas IDD is an approach for the assessment and

optimization of settings.

What is it good for? First, IDD is a conceptual value in itself. It supplements conventional ap-

proaches of designing diagnostics (with partial optimization of settings) and delivers alternatives

of designs which can be assessed with regard to additional constraints, e.g. costs or engineer-

ing feasibility. Second, for future devices, IDD may help to assess the contribution of different

measurements to the inference of a physical quantity, e.g. to compare the value of different tem-

perature measurements or to exploit synergies from applying experimental techniques according

to their specific strengths. Following the previously discussed example of density measurements,

a density meta-diagnostic could consist of a high temporal resolution reflectometry and a high

spatial resolution lithium beam measurement at the plasma edge and Thomson scattering and

interferometry channels in the plasma core to combine the data to a full density profile [5]. IDD

should be capable to tell which diagnostics are most appropriate for which part of the full in-

formation and should also be feasible to give figures for decision making. Background for such

questions are considerations to decide, e.g. whether an additional channel for interferometry gives

more benefit than a Thomson scattering channel. Third, IDD could be part of the solution for a

feasible reactor operation control.

Operating fusion diagnostics in reactors can be expected to differ considerably from present day

operation of diagnostics for physics exploration. If we expect both restricted diagnostics availabil-

ities due to harsh environments and much reduced accessibility, the set of diagnostics needs to be

reduced to the minimum set required for safe operation. Beyond such a monitoring, present day

operation scenarios of tokamaks make it very likely that diagnostics will be also required for the

control of a burning plasma. On the other hand, since a fusion reactor is supposed to have a small
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number of operation points, diagnostics are expected to have a much smaller scope than in present

day experiments. The concept of meta-diagnostics could open the possibility to consider combi-

nations of diagnostics, e.g. neutron measurements and magnetic sensors or other robust quantities,

for being sufficient to control a working point of a burning plasma.

To reflect the state of developments in the line of this paper, Bayesian diagnostics design

(BDD) has been employed to determine optimum choices for lines of sight of interferometers

[10]. The approach employs techniques of Bayesian experimental design [11, 12]. BED is the

optimization of settings of a diagnostic unit employing the Bayesian interpretation of probability

theory. Methodologically equivalent, BDD optimizes design parameters of diagnostics. Beyond

the determination of optimum settings, in the interferometer example BDD also indicated how

much the quality of the design decreased when the optimum setting has been left. The formal

approach will be recapitulated in more detail below. Tools allowing for the assessment of the ex-

pected utility of an experiment are rarely but available for the planning of experiments to optimize

the expected information gain [13]. The usual case is, however, that planning relies on the expe-

rience and knowledge of the operating personnel solely. For future experiments, such tools may

help to decide even on the implementation or the comprehensiveness of specific diagnostics. To

outline roughly the capabilities of such a tool, a calculation of the expected utility of experiments

is required. It is expected that this quantity helps to decide whether and to what extent a given

diagnostic set-up, respectively experiment is required to attain the goal of a physical study.

In the following section, the basic methodology is revised. A specific example is introduced

subsequently. Finally, the results and implications are discussed.

II. BAYESIAN EXPERIMENTAL DESIGN

The method employed for Integrated Diagnostics Design is Bayesian experimental design.

Technically, BED is to maximize an expected utility Ξ with respect to some design parameters η⃗.

A necessary condition for an optimal design is therefore

∂η⃗ Ξ(η⃗, σ⃗, I) = 0. (1)

where the parameters describing the errors σ⃗ of the expected data d⃗ are assumed to be given. The

context information I summarizes all assumptions entering the optimization and are kept here
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explicitly to document the optimization to be context dependent.

Following Lindley [11], the expected utility is due to an information gain J from the envisaged

measurement marginalized over the expected data:

Ξ(η⃗, σ⃗, I) =

∫
dd⃗ P (d⃗ |σ⃗, η⃗, I)J (d⃗, η⃗, σ⃗, I) (2)

Since J depends on d⃗, η⃗, σ⃗ and I , the weight function for the marginalization with respect to d⃗ is

the evidence of the envisaged measurement.

Being compliant with additivity, Lindley proposed to use a specific entropy measure, i.e. the

mean Kullback-Leibler divergence with regard to all quantities q⃗ to be measured:

J (d⃗, η⃗, σ⃗, I) =

∫
dq⃗ P (q⃗ |d⃗, σ⃗, η⃗, I) log2

(
P (q⃗ |d⃗, σ⃗, η⃗, I)

P (q⃗ |I)

)
(3)

where the information gain refers to the knowledge about q⃗ before a measurement (encoded by

the prior P (q⃗ |I)) and after a measurement (encoded by the posterior P (q⃗ |d⃗, σ⃗, η⃗, I)). As the

posterior is unknown, Bayes theorem is employed

P (q⃗ |d⃗, σ⃗, η⃗, I) = P (d⃗ |q⃗, σ⃗, η⃗, I)
P (d⃗ |σ⃗, η⃗, I)

P (q⃗ |I) (4)

to rephrase the expected utility finally to

Ξ(η⃗, σ⃗, I) =

∫ ∫
dd⃗ dq⃗ P (q⃗ |I)P (d⃗ |q⃗, σ⃗, η⃗, I) log2

(
P (d⃗ |q⃗, σ⃗, η⃗, I)∫

dq⃗ P (q⃗ |I)P (d⃗ |q⃗, σ⃗, η⃗, I)

)
(5)

where log2 is used to measure Ξ in bit. The prior plays the role to define the range of interest for

an envisaged measurement, say, a temperature range. The prior is also a suitable way to weight

regions of interest. The likelihood represents a virtual diagnostic and reflects a model of the mea-

surement as elaborated in the following. Eq. 5 also reflects a technical difficulty: the evaluation

of the expression requires a consecutive evaluation of three high-dimensional quadratures. The

introduction of new parameters and quantities, therefore, leads with increasing number of opti-

mization parameters to increasingly laborious numerical efforts. At this point, however, we note

that this formulation of the Expected Utility consists of the likelihood and the prior only and can

be evaluated for design tasks.
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Coming to practical evaluations, the explicit form of the likelihood is of interest. Assuming a

measurement for which data d⃗ and related errors σ⃗ are determined, the likelihood is according to

the maximum entropy principle a normal distribution:

P (d⃗ |q⃗, σ⃗, η⃗, I) =
∏
j

(
2π σ2

j

)−1/2
exp

{∑
j

−1

2

(
dj −Dj

σj

)2
}

(6)

where the index j is running over all components of the data vector d⃗. The data predicted for

the measurement, Dj , express the model of the measurement and are determined by means of the

forward function f which depends on the quantities q⃗ and the design parameters η⃗ under all stated

assumptions I:

Dj = f(qj, η⃗, I) (7)

A. Experimental Design of Single Diagnostics Units

For the examples discussed in the remainder, it is assumed that the quantities of interest are the

electron density ne and electron temperature Te.

q⃗ = {ne, Te} (8)

Furthermore it is assumed that the range of interest is given by some expectations for a future

fusion device and is chosen to be:

neϵ[0 . . . 2× 1020 m−3] (9)

Teϵ[0 . . . 20 keV] (10)

a. Interferometry (IF) To illustrate the capabilities of BDD , a line-integrated density mea-

surement is considered first. This example has been discussed in detail by Dreier et al. [10] to

optimize the position of a single chord interferometer for Wendelstein 7-X.

Here, the forward function and errors read as:

DIF = kIF ×
∫
L

ne(z) dℓ (11)

σ2
IF = σ2

IF 0 + rDIF (12)
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The interferometry data DIF are due to a phase shift proportional to the line integral of the

electron density ne along the laser chord L. The constant kIF summarizes dependencies on natural

constants, the laser wavelength and calibration factors provided the wavelength of the incident

beam is far from the plasma cut-off wavelength. The design parameter is the chord position η⃗ = z.

The error of the measurement σ2
IF is assumed to consist of a constant contribution σ2

IF 0 and a

contribution dependent on the signal level multiplied by a factor r.

It is a fairly expectable result of the optimization that the most informative chord is a central

one in circular geometry. This reflects a possibly anticipated optimum signal to noise ratio and

would not be found if the error is assumed to be a relative error of the data only.

For the aforementioned study for Wendelstein 7-X, different optimization targets have been

phrased in numerical conditions. E.g., the most informative chord for the localization of a density

gradient is determined both by an interplay of signal-to-noise ratio and the regions of gradient

variations. To illustrate this, Fig. 1 shows in its upper panel a poloidal cross section of a W7-X

equilibrium in the envisaged plane of the interferometry. The density distribution is shaded to ex-

press real space variations. The lower panel of the figure shows the expected utility parameterized

by two angles measured on a circle around the plasma in Fig. 1(a), both are measured clock-wise

from a zero on the top of the circle. With this parametrization, any chord can be described by these

two angles. The variation of the expected utility shows that channels crossing the plasma at about

the flux surface with largest variability of expected density gradients (i.e. close to the plasma edge)

have the largest expected utility. Among these, the chord traveling longest in real space through

the plasma is calculated to be the most informative. It is notably, that this laser chord is the one

among the selected edge chords with the highest signal-to-noise ratio. The maximum expected

utility is indicated by the circle in Fig. 1(b), a corresponding chord is also shown in Fig. 1(a) for

the purpose of illustration.

In addition to the demonstration of reasonable outcome, it is noteworthy that the expected

utility also gives figures to indicate how much the optimum conditions are attained. This allows

one to consider the robustness of an optimum choice. A further prominent feature of this approach

is that it allows for a comparison of different diagnostics. This has been discussed in Ref. [10]

for a multi-chord interferometer to consider which information gain can be attributed to newly

introduced chords.

b. Thomson Scattering (TS) As a second example, the choice of spectral channels for a set-

up for incoherent Thomson scattering also discussed in Ref. [14] will be presented here. Assuming
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a polychromator set-up, the band-width of spectral filters are considered to be varied. Fig. 2(a)

shows the relativistic scattering function S(λ, Te) for a laser wavelength of λ = 1064 nm. Fig. 2(b)

shows a set of three spectral model filters and the cut-off wavelengths λ1 and λ2 are the assumed

variables. For each spectral channel, the modeled data are given by

D
(j)
TS = k

(j)
TS × ne(x)

∫
τ (j)(λ)S(λ, Te) dλ (13)

where the transmission function τ of the j-th filter weights the wavelength contribution for a given

electron temperature Te. k
(j)
TS is a calibration factor again. The errors for the measurement are

again assumed to be

σ2
TS = σ2

TS 0 + rDTS (14)

complying with experiences from existent set-ups.

Fig. 2(c) shows the data for a given density indicating the specific effect of spectral filters.

The filter cut-off wavelengths are chosen as shown in Fig. 2(b). Then, for channel # 1, the signal

barely varies for lower temperatures but decreases monotonously for Te > 1 keV. Channel # 2

has maximum data at about Te ≈ 2 keV while channel # 3 shows signals almost monotonously

increasing with Te except for a saturation at highest temperatures.

As an example for the wavelength filter cut-off optimization, calculations for given error pa-

rameters have been performed (σ2
TS 0 = 0.6, r = 1%). Fig. 3(a) shows Ξ as a function of the two

cut-off wavelengths for the parameter range [ne, Te] = [0 . . . 2 × 1020 m−3, 0 . . . 20 keV]. The

parameter range of interest is reduced for Fig. 3(b) to [ne, Te] = [0 . . . 2×1019 m−3, 0 . . . 1 keV].

This comparison indicates that the expected utility depends on the range of interest: absolute

figures for Ξ increase with increasing ranges of interest roughly scaling with the volume of the

range of interest. This needs to be considered for comparative studies. The optimum choice is on

a broad maximum indicating the robustness against variations of the choices.

Finally, the maxima for the two cases differ somewhat but as anticipated: the smaller the tem-

perature the closer the spectral channels are to be chosen towards the laser wavelength due to the

temperature dependence of the scattering function.

The two model examples discussed in the present and the previous sub-sections show the capa-

bilities of BDD for a design of fusion diagnostics. Now the concept of an integrated design will

be introduced.
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III. THE CONCEPT OF INTEGRATED DIAGNOSTICS DESIGN

The concept of IDD is straightforward and conceptually simple: rather than optimizing in-

dividual diagnostics unit, IDD considers data sets as a whole. At this point, we introduce the

concept of a meta-diagnostic as exactly the combined set of data channels, regardless which di-

agnostics contribute. Integrated Diagnostics Design employs Eq. 5 for the meta-diagnostics as

previously discussed for individual units.

The expected benefit from this approach is sought to exploit synergies from a combined con-

sideration. This is, as previously discussed, in line with the concept of Integrated Data Analysis

(IDA) which benefits from a full data pooling. Different examples of IDA showed a quantitative

benefit from the data pooling by using the information content of correlations [3].

To discuss the difference, we make use of the specific choice for the information gain, i.e.

its additivity. Following the aforementioned terminology, the information gain for k different

diagnostic units being considered independently is

Ξ(conv)(η⃗, σ⃗, I) =
∑
k

Ξk(η⃗, σk, I) (15)

in other words, the data space is spanned by independent subspaces:

d⃗ = [{d1, d2, . . . , di}︸ ︷︷ ︸
diagnostics 1

, . . . { dj, . . . , dn}]︸ ︷︷ ︸
diagnostics k

(16)

Differently, IDD considers the full data-space as a whole:

d⃗ = {d1, d2, . . . , di, dj, . . . dn}︸ ︷︷ ︸
meta-diagnostic

(17)

allowing for arbitrary ordering. This is trivial but reflects the possibility to reorder the measure-

ments to the most relevant data sub-sets forming a most informative meta-diagnostic for a given,

finite number of measurements. The main difference of the formulation in Eqs. 16 and 17 is the

capability of the latter to make use of correlations between the diagnostics represented by their re-

spective data subspaces. If different measurements are completely independent, the IDD approach

is not expected to deliver different results compared to the conventional approach. But different

measurements from separate fusion diagnostics are usually not physically independent: different
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diagnostics may be partly affected by the same physics quantity or are linked by geometric infor-

mation, such as the mapping on flux surfaces. A case for which the consideration of correlations

results in an improved outcome is discussed in the next subsection.

A. The Interferometer/Thomson-Scattering Meta-Diagnostic

In order to apply the IDD concept a simple example of a meta-diagnostic is addressed. Specif-

ically, the combination of interferometer and Thomson scattering channels is optimized. In order

to visualize the quantities entering the expected utility Ξ, Fig. 4 shows the relevant probability

distributions. The case shown in this figure assumes errors as discussed in the previous sections.

To evaluate the line density signal of interferometry, parabolic profiles have been assumed. All

densities and temperatures in Fig. 4 refer to central values.

To visualize the course of calculations in more detail, Fig. 4 shows the range of interest (prior

distribution, upper left figure in Fig. 4), forward modeled data D (right hand plots in the first row

in Fig. 4), the likelihood functions of the expected data d (four exemplifying cases in plots of the

second up to the fifth row of Fig. 4) and the respective evidences (sixth row plots in Fig. 4). For

the forward modeled data, the gray scale indicates that the expected data always linearly increase

with the central density. For the Thomson scattering channels (columns indicated by TS), also a

temperature dependence occurs corresponding to the integral of the scattering function weighted

with the transmission characteristics of the polychromator channels. According to its forward

function, the interferometer signal (column indicated by IF), d does not show any temperature

dependence since the forward function does not either. The likelihood distributions exemplify the

explicit distributions for different values of expected data d. Again, the interferometer likelihood

distributions are invariant against variations of the temperature. This is different for the Thomson

scattering data: the likelihood function for individual Thomson scattering channels indicates the

combinations of Te and ne which resulted in given data as indicated in front of the rows of the

likelihoods. The widths of the likelihood probability distribution reflects the expected errors of the

measurement. Finally, the evidence represents these likelihood distributions being marginalized

with respect to the quantities. These distributions are employed to execute the quadrature required

to evaluate Ξ according to Eq. 5.

The capabilities to measure the value of a measurement in figures of Ξ is shown in Fig. 5. The

plot shows the mean information gain of the Thomson-scattering/interfermeter meta-diagnostic
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(full lines) in comparison to the Thomson scattering only (dotted lines) and the meta-diagnostic

without the Thomson scattering channel # 1 (dashed dotted lines). Furthermore, the parameters of

the error estimates r are systematically varied over four orders of magnitude. The off-set error s is

used as the abscissa of the plots.

As a first result, Ξ reflects a general, possibly anticipated tendency: the smaller the error (both

r and s), the more informative the measurement becomes. There is an exception for very large

errors (r = 10%). Formally, the quadrature suffers for these large errors from large portions of

expected data D at the boundary region of the marginalization domains which may formally occur

but are considered to be irrelevant (e.g. D < 0). We kept this example to indicate that there are

errors which may be that large that measurement give confusing results and quadrature problems

may arise in the case of large errors. An extension of the marginalization domain mitigates this

problem at the expense of higher computational effort.

A second finding, even more relevant to the determination of the value of a measurement is that

the results are given in absolute figures of the information gain Ξ. For a given meta-diagnostic,

this property allows statements about the value of apparent quality improvements. To discuss this

in more detail, we consider the r = 1% case in Fig. 5 (plots squares). It can be readily seen that

there is a minimum level of s around a few times 10−2 below which the information gain cannot

be improved. In other words, for this case the result imply that, e.g. using a detector with lower s

(for example a detector with lower dark current) would not improve the measurement.

Moreover, we can draw comparisons between differing set-ups. To exemplify this capabil-

ity, we consider the r = 0.01% case in Fig. 5 (lines without attached symbols). The maximum

information gain for Thomson-scattering only (dotted line for s → 0 almost coinciding with

the dashed-dotted line) is as informative as a full meta-diagnostic with errors larger than about

s > 2× 10−2. This example shows that the assessment of information gain allows one to compare

measuring capabilities of different set-ups quantitatively including and error levels.

Beyond criteria of design decisions, such an assessment of the information gain as shown

in Fig. 5 is also valuable for the assessment of robustness of a meta-diagnostic in case of fail-

ures of components of the meta-diagnostic. This is relevant particularly for measurements in

harsh environments expected for fusion reactors for which failures may occur more likely than

in present day devices and for which a much restricted accessibility hinders an unproblematic

maintenance. For instance, for the measurement set-up discussed here, we consider the two ’de-

graded’ cases in more detail. First, the virtually coinciding cases for ’Thomson scattering only’
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and ’Interferometry without Thomson scattering channel #1’ (dotted and dashed-dotted lines for

r = 0.01%, 0.1%, and 1%) indicate that the missing information from the first Thomson scatter-

ing channel could be compensated by an inclusion of interferometry data (compared with a fully

functional Thomson scattering set-up). In a forthcoming study, it should be examined whether the

inversion to yield the quantities of interest finally leads to the same results for the two ’degraded’

cases or, e.g., the inversion uncertainties for ne and Te are differently affected.

Following this discussion, Fig. 5 also gives rise to a couple of issues for the proposed approach.

First, it is to be outlined that the role of the target quantity should be kept in mind for the interpre-

tation of the information gain: here, the interferometry does not contain any information about the

electron temperature but constrains the joint electron-temperature and -density measurement. Ξ

will alter if Te is considered as the measurement target rather than {Te, ne}. Second, the informa-

tion gain Ξ is not trivially transformed to errors in the measurement of a quantity of interest. Since

Ξ relies on an information entropy, the comparison of set-ups with regard to Ξ is a monotonous

measure for the quality of a measurement. It is monotonously related to the improvement of mea-

suring errors, but the relation can be nonlinear.

With regard to these studies, it should not be hidden that a large number of assumptions en-

ter (error levels, distribution of expected data, fixed model parameters etc.) to keep the approach

numerically tractable. The reason is that additional parameters add in general an additional di-

mension leading to quickly emerging computational costs. The experience about the quadrature in

the presented examples is that the integration procedures need to be capable to treat highly peaked

and broad distributions at the same time. Low dimensional projections helped to identify critical

regions for the integrations.

IV. SUMMARY

A new concept for the design of diagnostics based on an integrated optimization of meta-

diagnostics has been proposed and first studies have been performed. The method relies on the

maximization of the mean information gain which can be expected from measurements for quan-

tities of interest. The resulting expected utility Ξ provides means to assess the value of measure-

ments under parameter variations, e.g. to investigate the impact of improved accuracies encoded

by parameters describing the error of a measurement. Furthermore, Ξ allows to compare dif-

ferent set-ups in figures of the mean expected information gain. This results in criteria, e.g., to
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select between different set-ups or to provide input to assess improvements of a diagnostic. The

IDD approach is expected to yield a higher information gain compared to the consideration of

individual set-ups. It is sought that this benefit results from the consideration of all data as a whole

similar to IDA.

The approach may result in high computational costs when the number of free parameters

grows. This argument, however, is to be balanced to the savings in the diagnostic efforts and

should be related to the overall effort of building a fusion power plant. The specific interpretation

of Ξ with regard to the uncertainty of a measurement is monotonous but may become non-linear

as previous studies of BDD have shown.

A next step is to validate the approach. This could be done in a well diagnosed fusion device

for which successively diagnostics channels are disregarded for the control of an actuator [15].

Such a validation qualifies the proposed method to discuss the problem to define a minimum set

of diagnostics to operate a fusion power plant safely. This could be an approach to define a set of

DEMO diagnostics compliant both with control requirements and technical constraints.
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Figure captions

Fig. 1: (a) Real space density distribution in the ϕ = 194◦ plane of Wendelstein 7-X. The line

is to indicate an optimum line of sight as indicated in the lower plot. (b) Expected utility for all

possible lines of sight parameterized by the start and end angle on a plasma circumventing circle

in (a). The optimization target is the detection of an edge gradient.

Fig. 2:(a) Scattering function (scattering angle π/4 for different electron temperatures (line codes

as for (c)). (b) Exemplary transmission curves for three spectral channels; the edge wavelengths

λ1 and λ2 are varied in the optimization study. (c) channel-wise wavelength weighted transmission

for different temperatures. ne

∫
ch S(λ, Te) τ(λ) dλ is proportional to the forward modeled data.

Fig. 3: Expected utility Ξ for two positions of a parabolic temperature and density profile. (a)

shows a channel in the very center (x = 0), (b) at x = 0.8 of the minor radius. The white circle in-

dicates the region of maximum excepted utility. The sections indicate the ranges for the numerical

integration, the upper half of the diagram has not been calculated since it corresponds to a change

of λ1 and λ2. The remaining white patches correspond to almost singular integration kernels due

to very small information entropies.

Fig. 4: Quantities relevant for the calculation of the expected utility Ξ of the Interferometer/Thomson-

Scattering meta-diagnostic. The first plot in the upper row shows the range of interest distribution

for the density and the temperature parameter represented by a constant, normalized distribution

of ne, Te values (range of interest). The gray scale for the remaining plots in the first row indicate

the values of the forward modeled data D. The second up to the fifth rows show the likelihood

distributions for given expected data d as indicated in front of each individual row. The sixth row

column the evidence as a function of the expected data d.

Fig. 5: Comparison of Expected Utilities from different data pooling approaches at different error

levels.
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