46 research outputs found

    Opinion article: Neurosurgical treatment for neuro-ophthalmologic conditions

    Get PDF
    A significant role of the neuro-ophthalmologist is to counsel patients on appropriate management and anticipated visual prognosis for conditions affecting the afferent and efferent visual systems, including those requiring neurosurgical treatment. However, the literature regarding anticipated neuro- ophthalmologic prognosis after neurosurgical intervention for cerebral aneurysms, sellar lesions, optic pathway tumors, and elevated intracranial pressure is limited with many key questions unanswered. For example, if a cerebral aneurysm is equally amenable to clipping or endovascular coiling, is there a preferred approach in terms of visual prognosis based on aneurysm location? Is dural venous sinus stenting (VSS) for idiopathic intracranial hypertension (IIH) superior, equivalent or inferior to shunting in terms of visual recovery and safety profile? Landmark studies on pituitary tumors using pre-operative optical coherence tomography (OCT) imaging of the optic nerve head to predict visual recovery after surgical decompression of the optic chiasm have changed neuro-ophthalmologic practice and enabled patients to be better informed regarding expected visual outcomes. 1,2 In order to optimize an interdisciplinary team approach to patient care, further studies of visual outcomes for neuro- ophthalmologic conditions requiring neurosurgical intervention are needed

    Telemedicine Evaluations in Neuro-Ophthalmology During the COVID19 Pandemic: Patient and Physician Surveys

    Get PDF
    Background: The novel coronavirus 2019 (COVID-19) pandemic has transformed healthcare. With the need to limit COVID-19 exposures, telemedicine has become an increasingly important format for clinical care. Compared to other fields, neuro-ophthalmology faces unique challenges given its dependence on physical examination signs that are difficult to elicit outside the office setting. As such, it is imperative to understand both patient and provider experiences in order to continue to adapt the technology and tailor its application. The purpose of this study is to analyze both neuro-ophthalmology physician and patient satisfaction with virtual health visits during the time of the COVID-19 pandemic. Methods: Across three institutions (NYU Langone Health, Indiana University Health, and Columbia University Medical Center), telemedicine surveys were administered to 159 patients. Neuro-ophthalmologists completed 157 surveys; each of these were linked to a single patient visit. Patient surveys consisted of five questions regarding visit preparation, satisfaction, challenges, and comfort. The physician survey included four questions that focused on ability to gather specific clinical information by history and examination. Results: Among 159 patients, 104 (65.4%) reported that they were satisfied with the visit, and 149 (93.7%) indicated that they were comfortable asking questions. Sixty-eight (73.9%) patients found the instructions provided prior to the visit easy to understand. Potential areas for improvement noted by patients included more detailed preparation instructions and better technology (phone positioning, internet connection, software). Over 87% (137/157) of neuroophthalmologists surveyed reported having performed an examination that provided enough information for medical decision-making. Some areas of the neuro-ophthalmologic exam were reported to be easy to conduct (range of eye movements, visual acuity, Amsler grids, Ishihara color plates, and pupillary exam). Other components were more difficult (saccades, red desaturation, visual fields, convergence, oscillations, ocular alignment, and smooth pursuit); some were especially challenging (vestibulo-ocular reflex [VOR], VOR suppression, and optokinetic nystagmus). Clinicians noted that virtual health visits were limited by patient preparation, inability to perform certain parts of the examination (funduscopy and pupils), and technological issues. Conclusions: Among virtual neuro-ophthalmology visits evaluated, most offer patients with appointments that satisfy their needs. The majority of physicians in this cohort obtained adequate clinical information for decision-making. Even better technology and instructions may help improve aspects of virtual health visits

    Tele-Neuro-Ophthalmology During the Age of COVID-19

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or be any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.In this article, we present possible “best practices” for neuro-ophthalmologists to design and implement tele-neuro-ophthalmology during and following this national and international crisis. We review the previsit, intravisit, and postvisit steps in a practical manner that we hope will be of value to practicing neuro-ophthalmologists. We include sections on how to appropriately implement telemedicine and patient selection, focusing on different types of visits, determining eligible patients, and triaging patients. In addition, we outline the software and hardware requirements for the electronic medical record (EMR), including Epic and non-Epic platforms. We also describe the nuts and bolts of how to get started, including descriptions of the multiple useful applications and software available. As with any medical encounter, privacy regulations, billing, and coding can be significant hurdles to implementation, and we discuss each in detail. We hope that this article will be of use for neuro-ophthalmologists, comprehensive ophthalmologists, and general neurologists because we deal with effects and aftereffects of this COVID-19 pandemic. We believe that this current disruptive innovation will drive the future of telemedicine in neuro-ophthalmology

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types

    Get PDF
    Protein ubiquitination is a dynamic and reversibleprocess of adding single ubiquitin molecules orvarious ubiquitin chains to target proteins. Here,using multidimensional omic data of 9,125 tumorsamples across 33 cancer types from The CancerGenome Atlas, we perform comprehensive molecu-lar characterization of 929 ubiquitin-related genesand 95 deubiquitinase genes. Among them, we sys-tematically identify top somatic driver candidates,including mutatedFBXW7with cancer-type-specificpatterns and amplifiedMDM2showing a mutuallyexclusive pattern withBRAFmutations. Ubiquitinpathway genes tend to be upregulated in cancermediated by diverse mechanisms. By integratingpan-cancer multiomic data, we identify a group oftumor samples that exhibit worse prognosis. Thesesamples are consistently associated with the upre-gulation of cell-cycle and DNA repair pathways, char-acterized by mutatedTP53,MYC/TERTamplifica-tion, andAPC/PTENdeletion. Our analysishighlights the importance of the ubiquitin pathwayin cancer development and lays a foundation fordeveloping relevant therapeutic strategies

    The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma

    Get PDF

    Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation.

    Get PDF
    Cancer progression involves the gradual loss of a differentiated phenotype and acquisition of progenitor and stem-cell-like features. Here, we provide novel stemness indices for assessing the degree of oncogenic dedifferentiation. We used an innovative one-class logistic regression (OCLR) machine-learning algorithm to extract transcriptomic and epigenetic feature sets derived from non-transformed pluripotent stem cells and their differentiated progeny. Using OCLR, we were able to identify previously undiscovered biological mechanisms associated with the dedifferentiated oncogenic state. Analyses of the tumor microenvironment revealed unanticipated correlation of cancer stemness with immune checkpoint expression and infiltrating immune cells. We found that the dedifferentiated oncogenic phenotype was generally most prominent in metastatic tumors. Application of our stemness indices to single-cell data revealed patterns of intra-tumor molecular heterogeneity. Finally, the indices allowed for the identification of novel targets and possible targeted therapies aimed at tumor differentiation
    corecore