991 research outputs found

    Exploring the Brain Responses to Driving Fatigue through Simultaneous EEG and fNIRS Measurements

    Full text link
    © 2020 World Scientific Publishing Company. Fatigue is one problem with driving as it can lead to difficulties with sustaining attention, behavioral lapses, and a tendency to ignore vital information or operations. In this research, we explore multimodal physiological phenomena in response to driving fatigue through simultaneous functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) recordings with the aim of investigating the relationships between hemodynamic and electrical features and driving performance. Sixteen subjects participated in an event-related lane-deviation driving task while measuring their brain dynamics through fNIRS and EEGs. Three performance groups, classified as Optimal, Suboptimal, and Poor, were defined for comparison. From our analysis, we find that tonic variations occur before a deviation, and phasic variations occur afterward. The tonic results show an increased concentration of oxygenated hemoglobin (HbO2) and power changes in the EEG theta, alpha, and beta bands. Both dynamics are significantly correlated with deteriorated driving performance. The phasic EEG results demonstrate event-related desynchronization associated with the onset of steering vehicle in all power bands. The concentration of phasic HbO2 decreased as performance worsened. Further, the negative correlations between tonic EEG delta and alpha power and HbO2 oscillations suggest that activations in HbO2 are related to mental fatigue. In summary, combined hemodynamic and electrodynamic activities can provide complete knowledge of the brain's responses as evidence of state changes during fatigue driving

    Relationship between Renal Function, Fibrin Clot Properties and Lipoproteins in Anticoagulated Patients with Atrial Fibrillation

    Get PDF
    Background: Mechanisms by which chronic kidney disease (CKD) influences fibrin clot properties in atrial fibrillation (AF) remain ill-defined. We aimed to investigate the effects of AF and CKD on fibrin clot properties and lipoproteins, and determine the relationship between these factors. Methods: Prospective cross-sectional study of patients recruited from cardiology services in Liverpool between September 2019 and October 2021. Primary groups consisted of anticoagulated AF patients with and without CKD in a 1:1 ratio. Control group comprised anticoagulated patients without AF or CKD. Fibrin clot properties were analysed using turbidity and permeation assays. Detailed lipoprotein characteristics, including total cholesterol, low-density lipoprotein cholesterol (LDL-C), small dense LDL and oxidised LDL, were measured. Results: Fifty-six anticoagulated patients were enrolled (median age 72.5; 34% female); 46 with AF (23 with CKD and 23 without CKD) and 10 controls. AF was associated with changes in three indices of fibrin clot properties using PTT (Tlag 314 vs. 358 s, p = 0.047; Abspeak 0.153 vs. 0.111 units, p = 0.031; Tlysis50% 884 vs. 280 s, p = 0.047) and thrombin reagents (Tlag 170 vs. 132 s, p = 0.031; Tmax 590 vs. 462 s, p = 0.047; Tpeak50% 406 vs. 220 s, p = 0.005) while the concomitant presence of CKD led to changes in fibrin clot properties using kaolin (Tlag 1072 vs. 1640 s, p = 0.003; Tmax 1458 vs. 1962 s, p = 0.005; Tpeak50% 1294 vs. 2046, p = 0.008) and PPP reagents (Tlag 566 vs. 748 s, p = 0.044). Neither of these conditions were associated with changes in fibrin clot permeability. Deteriorating eGFR was significantly correlated to the speed of clot formation, and CKD was independently associated with unfavourable clot properties (Tlag −778, p = 0.002; Tmax −867, p = 0.004; Tpeak50% −853, p = 0.004 with kaolin reagent). AF alone was not associated with changes in lipoprotein distribution while AF patients with CKD had lower total cholesterol, LDL-C and small dense LDL due to the presence of other risk factors. No significant relationship was observed between fibrin clot properties and lipoprotein distribution. Conclusions: There are important changes that occur in fibrin clot properties with AF and CKD that may account for the increased risk of thromboembolic complications. However, these changes in fibrin clot properties were not attributable to alterations in lipoprotein distribution

    Monitoring iron chelation effect in hearts of thalassaemia patients with improved sensitivity using reduced transverse relaxation rate (RR2)

    Get PDF
    Posters - Myocardial Viability: Human Models: No. 3660Accurate MRI characterization of myocardial iron is needed to improve the diagnosis and management of thalassaemia patients with transfusional iron overload. This study aimed to demonstrate that a new transverse relaxation index, the reduced R2 (RR2) that is estimated from non-monoexponential multi-echo CPMG signal decay and sensitive to ferritin iron, could detect the myocardial iron changes immediately following 1-week iron chelation suspension in thalassaemia patients at 3T.postprin

    Wafer-scale Fabrication of Non-Polar Mesoporous GaN Distributed Bragg Reflectors via Electrochemical Porosification

    Get PDF
    Distributed Bragg reflectors (DBRs) are essential components for the development of optoelectronic devices. For many device applications, it is highly desirable to achieve not only high reflectivity and low absorption, but also good conductivity to allow effective electrical injection of charges. Here, we demonstrate the wafer-scale fabrication of highly reflective and conductive non-polar gallium nitride (GaN) DBRs, consisting of perfectly lattice-matched non-polar (11–20) GaN and mesoporous GaN layers that are obtained by a facile one-step electrochemical etching method without any extra processing steps. The GaN/mesoporous GaN DBRs exhibit high peak reflectivities (>96%) across the entire visible spectrum and wide spectral stop-band widths (full-width at half-maximum >80nm), while preserving the material quality and showing good electrical conductivity. Such mesoporous GaN DBRs thus provide a promising and scalable platform for high performance GaN-based optoelectronic, photonic, and quantum photonic devices.This research was supported by the UK Engineering and Physical Sciences Research Council Grants EP/J003603/1 and EP/M011682/1. The microscopy studies were supported by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no 279361 (MACONS). Dr. T. Ding acknowledges the support from Leverhulme Early Career Fellowship (ECF-2016-606)

    Entomopathogenic Fungi on Hemiberlesia pitysophila

    Get PDF
    Hemiberlesia pitysophila Takagi is an extremely harmful exotic insect in forest to Pinus species, including Pinus massoniana. Using both morphological taxonomy and molecular phylogenetics, we identified 15 strains of entomogenous fungi, which belong to 9 genera with high diversities. Surprisingly, we found that five strains that were classified as species of Pestalotiopsis, which has been considered plant pathogens and endophytes, were the dominant entomopathogenic fungus of H. pitysophila. Molecular phylogenetic tree established by analyzing sequences of ribosomal DNA internal transcribed spacer showed that entomopathogenic Pestalotiopsis spp. were similar to plant Pestalotiopsis, but not to other pathogens and endophytes of its host plant P. massoniana. We were the first to isolate entomopathogenic Pestalotiopsis spp. from H. pitysophila. Our findings suggest a potential and promising method of H. pitysophila bio-control

    Cryoballoon pulmonary vein isolation as first-line treatment of typical atrial flutter: long-term outcomes of the CRAFT trial

    Get PDF
    \ua9 The Author(s) 2024.Background: CRAFT was an international, multicentre, randomised controlled trial across 11 sites in the United UK and Switzerland. Given the evidence that pulmonary vein triggers may be responsible for atrial flutter (AFL) as well as atrial fibrillation (AF), we hypothesised that cryoballoon pulmonary vein isolation (PVI) would provide greater symptomatic arrhythmia reduction than cavotricuspid isthmus (CTI) ablation, whilst also reducing the subsequent burden of AF. Twelve-month outcomes were previously reported. In this study, we report the extended outcomes of the CRAFT study to 36 months. Methods: Patients with typical AFL and no evidence of AF were randomised 1:1 to cryoballoon PVI or radiofrequency CTI. All patients received an implantable loop recorder (ILR) for continuous cardiac rhythm monitoring. The primary outcome was time-to-symptomatic arrhythmia recurrence > 30 s. Secondary outcomes included time-to-first-AF episode ≥ 2 min. The composite safety outcome included death, stroke and procedural complications. Results: A total of 113 patients were randomised to cryoballoon PVI (n = 54) or radiofrequency CTI ablation (n = 59). Ninety-one patients reconsented for extended follow-up beyond 12 months. There was no difference in the primary outcome between arms, with the primary outcome occurring in 12 PVI vs 11 CTI patients (HR 0.97; 95% CI 0.43–2.20; p = 0.994). AF ≥ 2 min was significantly less frequent in the PVI arm, affecting 26 PVI vs 36 CTI patients (HR 0.48; 95% CI 0.29–0.79; p = 0.004). The composite safety outcome occurred in 5 PVI and 6 CTI patients (p = 0.755). Conclusion: Cryoballoon PVI shows similar efficacy to radiofrequency CTI ablation in reducing symptomatic arrhythmia recurrence in patients presenting with isolated typical AFL but significantly reduces the occurrence of subsequent AF. Graphical Abstract: (Figure presented.)

    An effective all-atom potential for proteins

    Get PDF
    We describe and test an implicit solvent all-atom potential for simulations of protein folding and aggregation. The potential is developed through studies of structural and thermodynamic properties of 17 peptides with diverse secondary structure. Results obtained using the final form of the potential are presented for all these peptides. The same model, with unchanged parameters, is furthermore applied to a heterodimeric coiled-coil system, a mixed alpha/beta protein and a three-helix-bundle protein, with very good results. The computational efficiency of the potential makes it possible to investigate the free-energy landscape of these 49--67-residue systems with high statistical accuracy, using only modest computational resources by today's standards
    • …
    corecore