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Abstract
A new eigenvalue localization set for tensors is given and proved to be tighter than
those presented by Li et al. (Linear Algebra Appl. 481:36-53, 2015) and Huang et al.
(J. Inequal. Appl. 2016:254, 2016). As an application of this set, new bounds for the
minimum eigenvalue ofM-tensors are established and proved to be sharper than
some known results. Compared with the results obtained by Huang et al., the
advantage of our results is that, without considering the selection of nonempty
proper subsets S of N = {1, 2, . . . ,n}, we can obtain a tighter eigenvalue localization set
for tensors and sharper bounds for the minimum eigenvalue ofM-tensors. Finally,
numerical examples are given to verify the theoretical results.
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1 Introduction
For a positive integer n, n ≥ , N denotes the set {, , . . . , n}. C (respectively, R) denotes
the set of all complex (respectively, real) numbers. We call A = (ai···im ) a complex (real)
tensor of order m dimension n, denoted by C

[m,n](R[m,n]), if

ai···im ∈C(R),

where ij ∈ N for j = , , . . . , m. A is called reducible if there exists a nonempty proper index
subset J⊂ N such that

aii···im = , ∀i ∈ J,∀i, . . . , im /∈ J.

If A is not reducible, then we call A irreducible [].
Given a tensor A = (ai···im ) ∈ C

[m,n], if there are λ ∈ C and x = (x, x, . . . , xn)T ∈ C\{}
such that

Axm– = λx[m–],
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then λ is called an eigenvalue of A and x an eigenvector of A associated with λ, where
Axm– is an n dimension vector whose ith component is

(
Axm–)

i =
∑

i,...,im∈N

aii···im xi · · ·xim

and

x[m–] =
(
xm–

 , xm–
 , . . . , xm–

n
)T .

If λ and x are all real, then λ is called an H-eigenvalue of A and x an H-eigenvector of A
associated with λ; see [, ]. Moreover, the spectral radius ρ(A) of A is defined as

ρ(A) = max
{|λ| : λ ∈ σ (A)

}
,

where σ (A) is the spectrum of A, that is, σ (A) = {λ : λ is an eigenvalue of A}; see [, ].
A real tensor A is called an M-tensor if there exist a nonnegative tensor B and a positive

number α > ρ(B) such that A = αI – B, where I is called the unit tensor with its entries

δi···im =

⎧
⎨

⎩
 if i = · · · = im,

 otherwise.

Denote by τ (A) the minimal value of the real part of all eigenvalues of an M-tensor A.
Then τ (A) >  is an eigenvalue of A with a nonnegative eigenvector. If A is irreducible,
then τ (A) is the unique eigenvalue with a positive eigenvector [–].

Recently, many people have focused on locating eigenvalues of tensors and using ob-
tained eigenvalue inclusion theorems to determine the positive definiteness of an even-
order real symmetric tensor or to give the lower and upper bounds for the spectral radius
of nonnegative tensors and the minimum eigenvalue of M-tensors. For details, see [, ,
–].

In , Li et al. [] proposed the following Brauer-type eigenvalue localization set for
tensors.

Theorem  ([], Theorem ) Let A = (ai···im ) ∈C
[m,n]. Then

σ (A) ⊆ �(A) =
⋃

i,j∈N ,j �=i

�
j
i(A),

where

�
j
i(A) =

{
z ∈C :

∣∣(z – ai···i)(z – aj···j) – aij···jaji···i
∣∣ ≤ |z – aj···j|rj

i(A) + |aij···j|ri
j (A)

}
,

ri(A) =
∑

δii ···im =

|aii···im |, rj
i(A) =

∑

δii ···im =,
δji ···im =

|aii···im | = ri(A) – |aij···j|.

To reduce computations, Huang et al. [] presented an S-type eigenvalue localization
set by breaking N into disjoint subsets S and S̄, where S̄ is the complement of S in N .
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Theorem  ([], Theorem .) Let A = (ai···im ) ∈C
[m,n], S be a nonempty proper subset of

N , S̄ be the complement of S in N . Then

σ (A) ⊆ �S(A) =
( ⋃

i∈S,j∈S̄

�
j
i(A)

)
∪

( ⋃

i∈S̄,j∈S

�
j
i(A)

)
.

Based on Theorem , Huang et al. [] obtained the following lower and upper bounds
for the minimum eigenvalue of M-tensors.

Theorem  ([], Theorem .) Let A = (ai···im ) ∈R
[m,n] be an M-tensor, S be a nonempty

proper subset of N , S̄ be the complement of S in N . Then

min
{

min
i∈S

max
j∈S̄

Lij(A), min
i∈S̄

max
j∈S

Lij(A)
}

≤ τ (A) ≤ max
{

max
i∈S

min
j∈S̄

Lij(A), max
i∈S̄

min
j∈S

Lij(A)
}

,

where

Lij(A) =


{

ai···i + aj···j – rj
i(A) –

[(
ai···i – aj···j – rj

i(A)
) – aij···jrj(A)

] 

}

.

The main aim of this paper is to give a new eigenvalue inclusion set for tensors and prove
that this set is tighter than those in Theorems  and  without considering the selection
of S. And then we use this set to obtain new lower and upper bounds for the minimum
eigenvalue of M-tensors and prove that new bounds are sharper than those in Theorem .

2 Main results
Now, we give a new eigenvalue inclusion set for tensors and establish the comparison
between this set with those in Theorems  and .

Theorem  Let A = (ai···im ) ∈C
[m,n]. Then

σ (A) ⊆ �∩(A) =
⋃

i∈N

⋂

j∈N ,j �=i

�
j
i(A).

Proof For any λ ∈ σ (A), let x = (x, . . . , xn)T ∈Cn\{} be an associated eigenvector, i.e.,

Axm– = λx[m–]. ()

Let |xp| = max{|xi| : i ∈ N}. Then |xp| > . For any j ∈ N , j �= p, then from () we have

λxm–
p =

∑

δpi ···im =,
δji ···im =

api···im xi · · ·xim + ap···pxm–
p + apj···jxm–

j

and

λxm–
j =

∑

δji ···im =,
δpi ···im =

aji···im xi · · ·xim + aj···jxm–
j + ajp···pxm–

p ,
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equivalently,

(λ – ap···p)xm–
p – apj···jxm–

j =
∑

δpi ···im =,
δji ···im =

api···im xi · · ·xim ()

and

(λ – aj···j)xm–
j – ajp···pxm–

p =
∑

δji ···im =,
δpi ···im =

aji···im xi · · ·xim . ()

Solving xm–
p from () and (), we get

(
(λ – ap···p)(λ – aj···j) – apj···jajp···p

)
xm–

p

= (λ – aj···j)
∑

δpi ···im =,
δji ···im =

api···im xi · · ·xim + apj···j
∑

δji ···im =,
δpi ···im =

aji···im xi · · ·xim .

Taking absolute values and using the triangle inequality yields

∣∣(λ – ap···p)(λ – aj···j) – apj···jajp···p
∣∣|xp|m–

≤ |λ – aj···j|rj
p(A)|xp|m– + |apj···j|rp

j (A)|xp|m–.

Furthermore, by |xp| > , we have

∣
∣(λ – ap···p)(λ – aj···j) – apj···jajp···p

∣
∣ ≤ |λ – aj···j|rj

p(A) + |apj···j|rp
j (A),

which implies that λ ∈ �
j
p(A). From the arbitrariness of j, we have λ ∈ ⋂

j∈N ,j �=p �
j
p(A).

Furthermore, we have λ ∈ ⋃
i∈N

⋂
j∈N ,j �=i �

j
i(A). The conclusion follows. �

Next, a comparison theorem is given for Theorems ,  and .

Theorem  Let A = (ai···im ) ∈C[m,n], S be a nonempty proper subset of N . Then

�∩(A) ⊆ �S(A) ⊆ �(A).

Proof By Theorem . in [], �S(A) ⊆ �(A). Here, only �∩(A) ⊆ �S(A) is proved. Let
z ∈ �∩(A), then there exists some i ∈ N such that z ∈ �

j
i (A),∀j ∈ N , j �= i. Let S̄ be

the complement of S in N . If i ∈ S, then taking j ∈ S̄, obviously, z ∈ ⋃
i∈S,j∈S̄ �

j
i (A) ⊆

�S(A). If i ∈ S̄, then taking j ∈ S, obviously, z ∈ ⋃
i∈S̄,j∈S �

j
i (A) ⊆ �S(A). The conclusion

follows. �

Remark  Theorem  shows that the set �∩(A) in Theorem  is tighter than those in
Theorems  and , that is, �∩(A) can capture all eigenvalues of A more precisely than
�(A) and �S(A).
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In the following, we give new lower and upper bounds for the minimum eigenvalue of
M-tensors.

Theorem  Let A = (ai···im ) ∈R
[m,n] be an irreducible M-tensor. Then

min
i∈N

max
j �=i

Lij(A) ≤ τ (A) ≤ max
i∈N

min
j �=i

Lij(A).

Proof Let x = (x, x, . . . , xn)T be an associated positive eigenvector of A corresponding to
τ (A), i.e.,

Axm– = τ (A)x[m–]. ()

(I) Let xq = min{xi : i ∈ N}. For any j ∈ N , j �= q, we have by () that

τ (A)xm–
q =

∑

δqi ···im =,
δji ···im =

aqi···im xi · · ·xim + aq···qxm–
q + aqj···jxm–

j

and

τ (A)xm–
j =

∑

δji ···im =,
δqi ···im =

aji···im xi · · ·xim + aj···jxm–
j + ajq···qxm–

q ,

equivalently,

(
τ (A) – aq···q

)
xm–

q – aqj···jxm–
j =

∑

δqi ···im =,
δji ···im =

aqi···im xi · · ·xim ()

and

(
τ (A) – aj···j

)
xm–

j – ajq···qxm–
q =

∑

δji ···im =,
δqi ···im =

aji···im xi · · ·xim . ()

Solving xm–
q by () and (), we get

((
τ (A) – aq···q

)(
τ (A) – aj···j

)
– aqj···jajq···q

)
xm–

q

=
(
τ (A) – aj···j

) ∑

δqi ···im =,
δji ···im =

aqi···im xi · · ·xim + aqj···j
∑

δji ···im =,
δqi ···im =

aji···im xi · · ·xim .

From Theorem . in [], we have τ (A) ≤ mini∈N ai···i and

((
aq···q – τ (A)

)(
aj···j – τ (A)

)
– aqj···jajq···q

)
xm–

q

=
(
aj···j – τ (A)

) ∑

δqi ···im =,
δji ···im =

|aqi···im |xi · · ·xim + |aqj···j|
∑

δji ···im =,
δqi ···im =

|aji···im |xi · · ·xim .
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Hence,

((
aq···q – τ (A)

)(
aj···j – τ (A)

)
– |aqj···j||ajq···q|

)
xm–

q

≥ (
aj···j – τ (A)

) ∑

δqi ···im =,
δji ···im =

|aqi···im |xm–
q + |aqj···j|

∑

δji ···im =,
δqi ···im =

|aji···im |xm–
q .

From xq > , we have

(
aq···q – τ (A)

)(
aj···j – τ (A)

)
– |aqj···j||ajq···q|

≥ (
aj···j – τ (A)

) ∑

δqi ···im =,
δji ···im =

|aqi···im | + |aqj···j|
∑

δji ···im =,
δqi ···im =

|aji···im |

=
(
aj···j – τ (A)

)
rj

q(A) + |aqj···j|rq
j (A),

equivalently,

(
aq···q – τ (A)

)(
aj···j – τ (A)

)
–

(
aj···j – τ (A)

)
rj

q(A) – |aqj···j|rj(A) ≥ ,

that is,

τ (A) –
(
aq···q + aj···j – rj

q(A)
)
τ (A) + aq···qaj···j – aj···jrj

q(A) + aqj···jrj(A) ≥ .

Solving for τ (A) gives

τ (A) ≤ 

{

aq···q + aj···j – rj
q(A) –

[(
aq···q – aj···j – rj

q(A)
) – aqj···jrj(A)

] 

}

= Lqj(A).

For the arbitrariness of j, we have τ (A) ≤ minj �=q Lqj(A). Furthermore, we have

τ (A) ≤ max
i∈N

min
j �=i

Lij(A).

(II) Let xp = max{xi : i ∈ N}. Similar to (I), we have

τ (A) ≥ min
i∈N

max
j �=i

Lij(A).

The conclusion follows from (I) and (II). �

Similar to the proof of Theorem . in [], we can extend the results of Theorem  to a
more general case.

Theorem  Let A = (ai···im ) ∈R
[m,n] be an M-tensor. Then

min
i∈N

max
j �=i

Lij(A) ≤ τ (A) ≤ max
i∈N

min
j �=i

Lij(A).

By Theorems ,  and  in [], the following comparison theorem is obtained easily.
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Theorem  Let A = (ai···im ) ∈ R
[m,n] be an M-tensor, S be a nonempty proper subset of N ,

S̄ be the complement of S in N . Then

min
i∈N

Ri(A) ≤ min
j �=i

Lij(A) ≤ min
{

min
i∈S

max
j∈S̄

Lij(A), min
i∈S̄

max
j∈S

Lij(A)
}

≤ min
i∈N

max
j �=i

Lij(A)

≤ max
i∈N

min
j �=i

Lij(A) ≤ max
{

max
i∈S

min
j∈S̄

Lij(A), max
i∈S̄

min
j∈S

Lij(A)
}

,

where Ri(A) =
∑

i,...,im∈N aii···im .

Remark  Theorem  shows that the bounds in Theorem  are shaper than those in The-
orem , Theorem . of [] and Theorem  of [] without considering the selection of S,
which is also the advantage of our results.

3 Numerical examples
In this section, two numerical examples are given to verify the theoretical results.

Example  Let A = (aijk) ∈ R
[,] be an irreducible M-tensor with elements defined as

follows:

A(:, :, ) =

⎛

⎜
⎜⎜
⎝

 – – –
– – – –
– – – –
– – – –

⎞

⎟
⎟⎟
⎠

, A(:, :, ) =

⎛

⎜
⎜⎜
⎝

 – – –
–  – –
– – – –
– – – –

⎞

⎟
⎟⎟
⎠

,

A(:, :, ) =

⎛

⎜
⎜⎜
⎝

– – – –
– – – –
– –  –
– – – –

⎞

⎟
⎟⎟
⎠

, A(:, :, ) =

⎛

⎜
⎜⎜
⎝

– – – –
– – – –
– – – –
– – – 

⎞

⎟
⎟⎟
⎠

.

By Theorem . in [], we have

 = min
i∈N

Ri(A) ≤ τ (A) ≤ min
{

max
i∈N

Ri(A), min
i∈N

ai···i
}

= .

By Theorem  in [], we have

τ (A) ≥ min
j �=i

Lij(A) = ..

By Theorem , we have

if S = {}, S̄ = {, , }, . ≤ τ (A) ≤ .;

if S = {}, S̄ = {, , }, . ≤ τ (A) ≤ .;

if S = {}, S̄ = {, , }, . ≤ τ (A) ≤ .;

if S = {}, S̄ = {, , }, . ≤ τ (A) ≤ .;

if S = {, }, S̄ = {, }, . ≤ τ (A) ≤ .;

if S = {, }, S̄ = {, }, . ≤ τ (A) ≤ .;
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if S = {, }, S̄ = {, }, . ≤ τ (A) ≤ ..

By Theorem , we have

. ≤ τ (A) ≤ ..

In fact, τ (A) = .. Hence, this example verifies Theorem  and Remark , that is,
the bounds in Theorem  are sharper than those in Theorem , Theorem . of [] and
Theorem  of [] without considering the selection of S.

Example  Let A = (aijkl) ∈ R[,] be an M-tensor with elements defined as follows:

a = , a = –, a = –, a = ,

other aijkl = . By Theorem , we have

 ≤ τ (A) ≤ .

In fact, τ (A) = .

4 Conclusions
In this paper, we give a new eigenvalue inclusion set for tensors and prove that this set is
tighter than those in [, ]. As an application, we obtain new lower and upper bounds for
the minimum eigenvalue of M-tensors and prove that the new bounds are sharper than
those in [, , ]. Compared with the results in [], the advantage of our results is that,
without considering the selection of S, we can obtain a tighter eigenvalue localization set
for tensors and sharper bounds for the minimum eigenvalue of M-tensors.
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