716 research outputs found

    The wave-vector power spectrum of the local tunnelling density of states: ripples in a d-wave sea

    Full text link
    A weak scattering potential imposed on a CuO2CuO_2 layer of a cuprate superconductor modulates the local density of states N(x,ω)N(x,\omega). In recently reported experimental studies scanning-tunneling maps of N(x,ω)N(x,\omega) have been Fourier transformed to obtain a wave-vector power spectrum. Here, for the case of a weak scattering potential, we discuss the structure of this power spectrum and its relationship to the quasi-particle spectrum and the structure factor of the scattering potential. Examples of quasi-particle interferences in normal metals and ss- and d-wave superconductors are discussed.Comment: 22 pages, 21 figures; enlarged discussion of the d-wave response, to be published in Physical Review

    Tibetan sheep are better able to cope with low energy intake than Small-tailed Han sheep due to lower maintenance energy requirements and higher nutrient digestibilities

    No full text
    Tibetan sheep are indigenous to the Qinghai-Tibetan Plateau (QTP) and are well-adapted to and even thrive under the harsh alpine conditions. Small-tailed Han sheep were introduced to the plateau because of their high prolificacy and are maintained mainly in feedlots. Because of their different backgrounds, we hypothesised that Tibetan and Small-tailed Han sheep would differ in their utilization of energy intake and predicted that Tibetan sheep would cope better with low energy intake than Small-tailed Han sheep. To test this prediction, we determined nutrient digestibilities, energy requirements for maintenance and blood metabolite and hormone concentrations involved in energy metabolism in these breeds. Sheep of each breed (n = 24 of each, all wethers and 1.5 years of age) were distributed randomly into one of four groups and offered ad libitum diets of different digestible energy (DE) densities: 8.21, 9.33, 10.45 and 11.57 MJ DE/kg Dry matter (DM). Following 42 d of measuring feed intake, a 1-week digestion and metabolism experiment was done. DM intakes did not differ between breeds nor among treatments but, by design, DE intake increased linearly in both breeds as dietary energy level increased (P < 0.001). The average daily gain (ADG) was significantly greater in the Tibetan than Small-tailed Han sheep (P = 0.003) and increased linearly in both breeds (P < 0.001). In addition, from the regression analysis of ADG on DE intake, daily DE maintenance requirements were lower for Tibetan than for Small-tailed Han sheep (0.41 vs 0.50 MJ/BW0.75, P < 0.05). The DE and metabolizable energy (ME) digestibilities were higher in the Tibetan than Small-tailed Han sheep (P < 0.001) and increased linearly as the energy level increased in the diet (P < 0.001). At the lowest energy treatment, Tibetan sheep when compared with Small-tailed Han sheep, had: 1) higher serum glucose and glucagon, but lower insulin concentrations (P < 0.05), which indicated a higher capacity for gluconeogenesis and ability to regulate glucose metabolism; and 2) higher non-esterified fatty acids (NEFA) and lower very low density lipoprotein (VLDL) and triglyceride (TG) concentrations (P < 0.05), which indicated a higher capacity for NEFA oxidation but lower ability for triglyceride (TG) synthesis. We concluded that our prediction was supported as these differences between breeds conferred an advantage for Tibetan over Small-tailed Han sheep to cope better with low energy diets

    Elevated [CO2] alleviates the impacts of water deficit on xylem anatomy and hydraulic properties of maize stems

    Get PDF
    Plants can modify xylem anatomy and hydraulic properties to adjust to water status. Elevated [CO2] can increase plant water potential via reduced stomatal conductance and water loss. This raises the question of whether elevated [CO2], which thus improves plant water status, will reduce the impacts of soil water deficit on xylem anatomy and hydraulic properties of plants. To analyse the impacts of water and [CO2] on maize stem xylem anatomy and hydraulic properties, we exposed potted maize plants to varying [CO2] levels (400, 700, 900, and 1,200 ppm) and water levels (full irrigation and deficit irrigation). Results showed that at current [CO2], vessel diameter, vessel roundness, stem cross‐section area, specific hydraulic conductivity, and vulnerability to embolism decreased under deficit irrigation; yet, these impacts of deficit irrigation were reduced at elevated [CO2]. Across all treatments, midday stem water potential was tightly correlated with xylem traits and displayed similar responses. A distinct trade‐off between efficiency and safety in stem xylem water transportation in response to water deficit was observed at current [CO2] but not observed at elevated [CO2]. The results of this study enhance our knowledge of plant hydraulic acclimation under future climate environments and provide insights into trade‐offs in xylem structure and function

    Multispectral upconversion luminescence intensity ratios for ascertaining the tissue imaging depth

    Get PDF
    Upconversion nanoparticles (UCNPs) have in recent years emerged as excellent contrast agents for in vivo luminescence imaging of deep tissues. But information abstracted from these images is in most cases restricted to 2-dimensions, without the depth information. In this work, a simple method has been developed to accurately ascertain the tissue imaging depth based on the relative luminescence intensity ratio of multispectral NaYF4:Yb3+,Er3+ UCNPs. A theoretical mode was set up, where the parameters in the quantitative relation between the relative intensities of the upconversion luminescence spectra and the depth of the UCNPs were determined using tissue mimicking liquid phantoms. The 540 nm and 650 nm luminescence intensity ratios (G/R ratio) of NaYF4:Yb3+,Er3+ UCNPs were monitored following excitation path (Ex mode) and emission path (Em mode) schemes, respectively. The model was validated by embedding NaYF4:Yb3+,Er3+ UCNPs in layered pork muscles, which demonstrated a very high accuracy of measurement in the thickness up to centimeter. This approach shall promote significantly the power of nanotechnology in medical optical imaging by expanding the imaging information from 2-dimensional to real 3-dimensional

    Investigation on wear and rolling contact fatigue of wheel-rail materials under various wheel/rail hardness ratio and creepage conditions

    Get PDF
    The wear and rolling contact fatigue of wheel-rail materials were investigated through varying wheel/rail hardness ratios (Hw/Hr) and creepages. The results indicated that with the Hw/Hr increasing from 0.927 to 1.218, the wheel wear rate reduced significantly in the case of Hw/Hr = 1.218, the rail wear rate showed an increasing trend. Both the wheel and rail wear rates increased as the creepage enlarged. The synergistic results of Hw/Hr and creepage caused a transition of the wear and damage mechanisms on the wheel-rail steels. Besides, the fatigue damage of ER7 and CL60 wheel materials was dominated by slender multi-layer cracks, while the fatigue cracks were short and contained lots of interlayer broken materials on C-class wheel steel

    Wear and damage transitions of wheel and rail materials under various contact conditions

    Get PDF
    This study discusses a TÎł/A method of plotting wear data from a twin-disc machine for identifying the wear and damage transitions of wheel and rail materials. As found in previous work, three wear regimes (mild wear, severe wear and catastrophic wear) of U71Mn rail material were identified in dry rolling-sliding contact tests. It was determined that the damage mechanism transforms in the different wear regimes. Here earlier studies were extended to establish wear behavior for the presence of a number of third body materials (oil, water, friction enhancers) and a rail cladding process designed to make wheels and rails more durable. This has provided much needed data for Multi-Body Dynamics (MBD) simulations, and will allow better predictions of profile evolution of wheel and rail over a wider range of conditions

    A multi-disciplinary perspective on climate model evaluation for Antarctica

    Get PDF
    A workshop was organized by Antarctic Climate 21 (AntClim21), with the topic 'evaluation of climate models' representation of Antarctic climate from the perspective of long-term twenty-first-century climate change.' The suggested approach for evaluating whether climate models over- or underestimate the effects of ozone depletion is to diagnose simulated historical trends in lower-stratospheric temperature and compare these to observational estimates. With regard to more regional changes over Antarctica, such as West Antarctic warming, the simulation of teleconnection patterns to the tropical Pacific was highlighted. To improve the evaluation of low-frequency variability and trends in climate models, the use and development of approaches to emulate ice-core proxies in models was recommended. It is recommended that effort be put into improving datasets of ice thickness, motion, and composition to allow for a more complete evaluation of sea ice in climate models. One process that was highlighted in particular is the representation of Antarctic clouds and resulting precipitation. It is recommended that increased effort be put into observations of clouds over Antarctica, such as the use of instruments that can detect cloud-base height or the use of remote sensing resources

    Comparison of wear and rolling contact fatigue behaviours of bainitic and pearlitic rails under various rolling-sliding conditions

    Get PDF
    Rolling-sliding wear experiments were performed to investigate the wear and rolling contact fatigue (RCF) behaviours of a premium pearlitic rail (PH), a carbon-free bainitic rail (BH) and two standard pearlitic rails (U71Mn and U75V). The wear regime and RCF damage evolution of the PH and BH materials in terms of TÎł/A (i.e. creepages and contact pressures) were compared and analyzed. The high-hardness BH steel presented a wear resistance similar to U71Mn and U75V rail materials, whereas lower wear rate was shown by the PH steel. Concerning the RCF performance, the damage of BH steel (comparable to U75V) was more severe than that of PH steel (comparable to U71Mn). Finally, with the increase in creepages and pressures, the wear and RCF damage of both PH and BH steels increased. These information could provide a guide in choosing rail materials and in development of bainitic rails

    Search for antihelium in cosmic rays

    Get PDF
    The Alpha Magnetic Spectrometer (AMS) was flown on the space shuttle Discovery during flight STS-91 in a 51.7 degree orbit at altitudes between 320 and 390 km. A total of 2.86 * 10^6 helium nuclei were observed in the rigidity range 1 to 140 GV. No antihelium nuclei were detected at any rigidity. An upper limit on the flux ratio of antihelium to helium of < 1.1 * 10^-6 is obtained.Comment: 18 pages, Latex, 9 .eps figure
    • 

    corecore