54 research outputs found

    Domain Conditioned Adaptation Network

    Full text link
    Tremendous research efforts have been made to thrive deep domain adaptation (DA) by seeking domain-invariant features. Most existing deep DA models only focus on aligning feature representations of task-specific layers across domains while integrating a totally shared convolutional architecture for source and target. However, we argue that such strongly-shared convolutional layers might be harmful for domain-specific feature learning when source and target data distribution differs to a large extent. In this paper, we relax a shared-convnets assumption made by previous DA methods and propose a Domain Conditioned Adaptation Network (DCAN), which aims to excite distinct convolutional channels with a domain conditioned channel attention mechanism. As a result, the critical low-level domain-dependent knowledge could be explored appropriately. As far as we know, this is the first work to explore the domain-wise convolutional channel activation for deep DA networks. Moreover, to effectively align high-level feature distributions across two domains, we further deploy domain conditioned feature correction blocks after task-specific layers, which will explicitly correct the domain discrepancy. Extensive experiments on three cross-domain benchmarks demonstrate the proposed approach outperforms existing methods by a large margin, especially on very tough cross-domain learning tasks.Comment: Accepted by AAAI 202

    The positivity rates and drug resistance patterns of Mycobacterium tuberculosis using nucleotide MALDI-TOF MS assay among suspected tuberculosis patients in Shandong, China: a multi-center prospective study

    Get PDF
    ObjectiveTo investigate the positivity rates and drug resistance characteristics of Mycobacterium tuberculosis (MTB) among suspected tuberculosis (TB) patients in Shandong Province, the second-largest population province in China.MethodsA prospective, multi-center study was conducted from April 2022 to June 2023. Pathogen and drug resistance were identified using nucleotide matrix-assisted laser desorption ionization time-of-flight mass spectrometry (nucleotide MALDI-TOF MS).ResultsOf 940 suspected TB patients included in this study, 552 cases were found to be infected with MTB giving an overall positivity rate of 58.72%. Total of 346 cases were resistant to arbitrary anti-TB drug (62.68%), with Zibo (76.47%), Liaocheng and Weihai (both 69.23%) ranking top three and TB treatment history might be a related factor. Monoresistance was the most common pattern (33.53%), with isoniazid the highest at 12.43%, followed by rifampicin at 9.54%. Further analysis of gene mutations conferring resistance revealed diverse types with high heteroresistance rate found in multiple anti-TB drugs.ConclusionA relatively high rate of MTB positivity and drug resistance was found in Shandong Province during and after the COVID-19 pandemic, indicating the need for strengthening rapid identification of species and drug resistance among suspected TB patients to guide better medication and minimize the occurrence of drug resistance

    Impact of early events and lifestyle on the gut microbiota and metabolic phenotypes in young school-age children

    Get PDF
    Abstract Background The gut microbiota evolves from birth and is in early life influenced by events such as birth mode, type of infant feeding, and maternal and infant antibiotics use. However, we still have a gap in our understanding of gut microbiota development in older children, and to what extent early events and pre-school lifestyle modulate the composition of the gut microbiota, and how this impinges on whole body metabolic regulation in school-age children. Results Taking advantage of the KOALA Birth Cohort Study, a long-term prospective birth cohort in the Netherlands with extensive collection of high-quality host metadata, we applied shotgun metagenomics sequencing and systematically investigated the gut microbiota of children at 6–9 years of age. We demonstrated an overall adult-like gut microbiota in the 281 Dutch school-age children and identified 3 enterotypes dominated by the genera Bacteroides, Prevotella, and Bifidobacterium, respectively. Importantly, we found that breastfeeding duration in early life and pre-school dietary lifestyle correlated with the composition and functional competences of the gut microbiota in the children at school age. The correlations between pre-school dietary lifestyle and metabolic phenotypes exhibited a striking enterotype dependency. Thus, an inverse correlation between high dietary fiber consumption and low plasma insulin levels was only observed in individuals with the Bacteroides and Prevotella enterotypes, but not in Bifidobacterium enterotype individuals in whom the gut microbiota displayed overall lower microbial gene richness, alpha-diversity, functional potential for complex carbohydrate fermentation, and butyrate and succinate production. High total fat consumption and elevated plasma free fatty acid levels in the Bifidobacterium enterotype are associated with the co-occurrence of Streptococcus. Conclusions Our work highlights the persistent effects of breastfeeding duration and pre-school dietary lifestyle in affecting the gut microbiota in school-age children and reveals distinct compositional and functional potential in children according to enterotypes. The findings underscore enterotype-specific links between the host metabolic phenotypes and dietary patterns, emphasizing the importance of microbiome-based stratification when investigating metabolic responses to diets. Future diet intervention studies are clearly warranted to examine gut microbe-diet-host relationships to promote knowledge-based recommendations in relation to improving metabolic health in children

    A New Sparse Bayesian Learning-Based Direction of Arrival Estimation Method with Array Position Errors

    No full text
    In practical applications, the hydrophone array has element position errors, which seriously degrade the performance of the direction of arrival estimation. We propose a direction of arrival (DOA) estimation method based on sparse Bayesian learning using existing array position errors to solve this problem. The array position error and angle grid error parameters are introduced, and the prior distribution of these two errors is determined. The joint probability density distribution function is established by means of a sparse Bayesian learning model. At the same time, the unknown parameters are optimized and iterated using the expectation maximum algorithm and the corresponding parameters are solved to obtain the spatial spectrum. The results of the simulation and the lake experiments show that the proposed method effectively overcomes the problem of array element position errors and has strong robustness. It shows a good performance in terms of its estimation accuracy, meaning that the resolution ability can be greatly improved in the case of a low signal-to-noise ratio or small number of snapshots
    corecore