5,212 research outputs found

    Large sulfur isotope fractionations in Martian sediments at Gale crater

    No full text
    Variability in the sulfur isotopic composition in sediments can reflect atmospheric, geologic and biological processes. Evidence for ancient fluvio-lacustrine environments at Gale crater on Mars and a lack of efficient crustal recycling mechanisms on the planet suggests a surface environment that was once warm enough to allow the presence of liquid water, at least for discrete periods of time, and implies a greenhouse effect that may have been influenced by sulfur-bearing volcanic gases. Here we report in situ analyses of the sulfur isotopic compositions of SO2 volatilized from ten sediment samples acquired by NASA’s Curiosity rover along a 13 km traverse of Gale crater. We find large variations in sulfur isotopic composition that exceed those measured for Martian meteorites and show both depletion and enrichment in 34S. Measured values of δ34S range from −47 ± 14‰ to 28 ± 7‰, similar to the range typical of terrestrial environments. Although limited geochronological constraints on the stratigraphy traversed by Curiosity are available, we propose that the observed sulfur isotopic signatures at Gale crater can be explained by equilibrium fractionation between sulfate and sulfide in an impact-driven hydrothermal system and atmospheric processing of sulfur-bearing gases during transient warm periods

    Damage and energy absorption behaviour of composite laminates under impact loading using different impactor geometries

    Get PDF
    The present paper compares the damage and energy absorption behaviour of composites subjected to low-velocity impact using different frontal geometries for the impactor, with the composites possessing a layup of [02/902]2s. In this study, the rigid impactors with either round-nosed or flat-ended frontal geometry are employed to perform drop-weight tests at various impact energies ranging from 10 to 30 J. The measured loading response and energy absorption are analysed and compared. Additionally, the types and extent of impact-induced damage in the composite specimens are assessed via ultrasonic C-scan, optical microscopy (OM) and scanning electron microscopy (SEM) studies. It is shown that the impact energy threshold for damage initiation is greater than 20 J when using the flat-ended impactor but is less than 10 J when using the round-nosed impactor. In both cases, delamination initiates between the plies in the composite laminate. However, for the flat-ended impactor, the damage behaviour of the fibres exhibits kinking fracture, which differs from the pull-out fibre-fracture caused by the round-nosed impactor. These differences in behaviour are attributed to impactor/composite contact geometry effects which leads to different extents of indentation damage, which in turn directly affects the degree of delamination and fibre damage in the composite

    Similarity solutions for unsteady shear-stress-driven flow of Newtonian and power-law fluids : slender rivulets and dry patches

    Get PDF
    Unsteady flow of a thin film of a Newtonian fluid or a non-Newtonian power-law fluid with power-law index N driven by a constant shear stress applied at the free surface, on a plane inclined at an angle α to the horizontal, is considered. Unsteady similarity solutions representing flow of slender rivulets and flow around slender dry patches are obtained. Specifically, solutions are obtained for converging sessile rivulets (0 < α < π/2) and converging dry patches in a pendent film (π/2 < α < π), as well as for diverging pendent rivulets and diverging dry patches in a sessile film. These solutions predict that at any time t, the rivulet and dry patch widen or narrow according to |x|3/2, and the film thickens or thins according to |x|, where x denotes distance down the plane, and that at any station x, the rivulet and dry patch widen or narrow like |t|−1, and the film thickens or thins like |t|−1, independent of N

    Robust radiative cooling via surface phonon coupling-enhanced emissivity from SiO2 micropillar arrays

    Get PDF
    Silicon dioxide (SiO2) is a prominent candidate for radiative cooling applications due to its low absorption in solar wavelengths (0.25-2.5 µm) and exceptional stability. However, its bulk phonon-polariton band results in a strong reflection peak in the atmospheric transparency window (8-13 µm), making it difficult to meet the requirements for sub-ambient passive radiative cooling. Herein, we demonstrate that SiO2 micropillar arrays can effectively suppress infrared reflection at 8-13 µm and enhance the infrared emissivity by optimizing the micropillar array structure. We created a pattern with a height, spacing, and diameter of approximately 1.45 µm, 0.15 µm, and 0.35 µm, respectively, on top of a bulk SiO2 substrate using reactive ion etching. The resulting surface phonon coupling of the micropillar array led to an increase in the thermal emissivity from 0.79 to 0.94. Outdoor tests show that the SiO2 cooler with an optimized micropillar array can generate an average temperature drop of 5.5 °C throughout the daytime underneath an irradiance of 843.1 W/m^2 at noon. Furthermore, the micropillar arrays endow the SiO2 cooler with remarkable hydrophobic properties, attributed to the formation of F/C compounds introduced during the etching process. Finally, we also replicated the micropillar pattern onto the surface of industrial optical solar reflectors (OSRs), demonstrating similar emissivity and hydrophobicity enhancements. Our findings revealed an effective strategy for modifying the thermal management features of durable SiO2 layers, which can be harnessed to cool OSRs and other similar sky-facing devices

    Recent progress in organic-based radiative cooling materials: fabrication methods and thermal management properties

    Get PDF
    Organic-based materials capable of radiative cooling have attracted widespread interest in recent years due to their ease of engineering and good adaptability to different application scenarios. As a cooling material for walls, clothing, and electronic devices, these materials can reduce the energy consumption load of air conditioning, improve thermal comfort, and reduce carbon emissions. In this paper, an overview is given of the current fabrication strategies of organic-based radiative cooling materials, and of their properties. The methods and joint thermal management strategies including evaporative cooling, phase-change materials, fluorescence, and light-absorbing materials that have been demonstrated in conjunction with a radiative cooling function are also discussed. This review provides a comprehensive overview of organic-based radiative cooling, exemplifying the emerging application directions in this field and highlighting promising future research directions in the field

    Machine-Learning-Assisted Design of a Robust Biomimetic Radiative Cooling Metamaterial

    Get PDF
    Recently, biomimetic photonic structural materials have significantly improved their radiative cooling performance. However, most research has focused on understanding cooling mechanisms, with limited exploration of sensitive parameter variations. Traditional numerical methods are costly and time-consuming and often struggle to identify optimal solutions, limiting the scope of high-performance microstructure design. To address these challenges, we integrated machine learning into the design of Batocera LineolataHope bionic photonic structures, using SiO2 as the substrate. Deep learning models provided insights into the complex relationship between bionic metamaterials and their spectral response, enabling us to identify the optimal performance parameter range for truncated cone arrays (height-to-diameter ratio (H/D-bottom) from 0.8 to 2.4), achieving a high average emissivity of 0.985. Experimentally, the noon temperature of fabricated samples decreased by about 8.3 degrees C. This data-driven approach accelerates the design and optimization of robust biomimetic radiative cooling metamaterials, promising significant advancements in standardized passive radiative cooling applications

    Associations between objectively assessed and questionnaire-based sedentary behaviour with body mass index and systolic blood pressure in Kuwaiti adolescents.

    Get PDF
    OBJECTIVE: Kuwait has one of the highest obesity rates in the world. This study examined the associations between sedentary behaviour (objectively measured and self-reported), adiposity and systolic blood pressure in a sample of adolescents residing in Kuwait. Data was obtained from the Study of Health and Activity among adolescents in Kuwait (2012-2013). The sample included a total of 435 adolescents (201 boys). Outcomes were age- and sex specific body mass index Z-scores and systolic blood pressure. Exposures were total sedentary behaviour measured by accelerometry and time spent in some sedentary behaviours (television viewing, video games, computer use and total screen-time). We used multiple linear regression analyses, adjusted for age, governorate, maternal education and physical activity, to examine associations between sedentary behaviour and adiposity and systolic blood pressure. RESULTS: Only 2 statistically significant associations were found between sedentary behaviour and the study outcomes: body mass in boys was directly associated with higher sedentary time [β (95% CIs) 0.003 (0.00 to 0.06)]; body mass index was inversely associated with videogames in both sexes [girls: β (95% CIs) - 0.17 (- 0.48 to - 0.04); boys: - 0.24 (- 0.57 to - 0.12)]. In this sample of Kuwaiti adolescents, sedentary behaviour showed limited deleterious associations with adiposity and systolic blood pressure

    Designer SiO2 Metasurfaces for Efficient Passive Radiative Cooling

    Get PDF
    In recent years, an increasing number of passive radiative cooling materials are proposed in the literature, with several examples relying on the use of silica (SiO2) due to its unique stability, non-toxicity, and availability. Nonetheless, due to its bulk phonon-polariton band, SiO2 presents a marked reflection peak within the atmospheric transparency window (8-13 mu m), leading to an emissivity decrease that poses a challenge to fulfilling the criteria for sub-ambient passive radiative cooling. Thus, the latest developments in this field are devoted to the design of engineered SiO2 photonic structures, to increase the cooling potential of bulk SiO2 radiative coolers. This review seeks to identify the most effective photonic design and fabrication strategies for SiO2 radiative emitters by evaluating their cooling efficacy, as well as their scalability, providing an in-depth analysis of the fundamental principles, structural models, and results (both numerical and experimental) of various types of SiO2 radiative coolers
    corecore