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Machine-Learning-Assisted Design of a Robust Biomimetic Radiative Cooling

Metamaterial

Zhenmin Ding, Xin Li, Qingxiang Ji *, Yunce Zhang, Honglin Li, Hulin Zhang,

Lorenzo Pattelli, Yao Li, Hongbo Xu *, Jiupeng Zhao *

Abstract: Recently, biomimetic photonic structural materials have significantly

advanced the radiative cooling performance of designed materials. However, the

biomimetic metamaterials have largely concentrated on the biological radiative

cooling mechanism, with little effort to investigate sensitive parameter variations.

Additionally, traditional numerical methods are not only costly and laborious, but also

challenging to uncover optimal solutions, often yielding high-performance

microstructures with a narrow range of preparation intervals. To address this, machine

learning (ML) was introduced into the design of a biomimetic photonic structure

based on the Batocera LineolataHope, and silicon dioxide (SiO2) was chosen as the

substrate material. By employing a deep learning model, we can understand the

correlation between biomimetic metamaterial and their corresponding spectral

responses. We managed to attain a large range (H/Dbottom between 0.8 and 2.4) of

optimal performance parameters for a truncated cone array, which resulted in an

average emissivity of 0.985. Subsequently, the fabricated truncated cone array

samples showed a temperature drop of about 8.3 °C at midday in experiments. By

taking the above data-driven approach, the process of designing and optimizing robust

biomimetic radiative cooling metamaterials can be expedited, making it an ideal



option for standardized passive radiative cooling applications.

Keywords: Biomimetic photonic materials, Machine learning, Photonic design,

Infrared emissivity, Radiative cooler

1. Introduction

Metamaterials created through photonic micro/nanostructures have been

extensively studied in the fields of thermal manipulation, i.e., thermal camouflage,

radiative cooling, signaling, and so forth.1-3 Of particular interest is the imitation of

microstructures based on natural creatures, as this allows for the direct analysis of the

microstructure's functionality through the external behavior of plants and animals.4-9

The application of biomimetic photonic structures in the realm of infrared radiation is

a promising trend, which can greatly enhance the radiative cooling performance of

designed materials.10-11 This form of passive cooling, different from active cooling

systems such as air conditioning, requires no extra energy input and produces no

pollution, showing a significant contribution to energy conservation and

environmental protection.12-13

Researchers have developed materials and systems that are proficient in radiative

cooling by examining the heat radiation characteristics of living organisms. Shi et al.14

first discovered that the Sahara silver ants have a remarkable radiative cooling feature

because of the densely packed triangular hairs on their heads. Xie et al.15

demonstrated that the scales section of the white beetle (Goliathus goliatus) in tropical

rainforests has shell/hollow cylinder structures that can suppress reflection in the

mid-infrared band, thereby augmenting the emissivity. Some other organisms, like

various types of butterflies,16-17 golden cicadas,18 and long-horned beetles,19 also



exhibit enlarged emissivity in the mid-infrared band by reducing the reflection.

Current metamaterial design primarily draws on the biological radiative cooling

mechanism, neglecting the exploration of the primary structural parameters in

practical preparation. This method, however, does not establish a connection between

the sample spectra and the sensitive parameters, and thus cannot be used to provide a

useful guide for practical preparations.

The preparation of biomimetic photonic materials typically involves complex

processing, for which numerical methods provide an effective way to predict the

optical response of intricate artificial structures.20-22 For example, our previous work

has demonstrated that the emissivity of microstructured samples is optimized when

the period of the microcone arrays is 1-2 µm and the aspect ratio is greater than 1.5.23

Numerical optimization of the cylindrical parameters for the cone-pillar bi-structured

SiC surfaces was conducted by Chen et al.24 to guide subsequent experimental

preparations, with the optimized parameters being a pitch of roughly 2 μm, a diameter

of 6 μm, and a structural height of 8.3 μm. Additionally, Genetic Algorithms and

Topological Optimization are often used in the optimization process; however, these

techniques are usually slow, inefficient, and can easily become stuck in a local

optimum. In practical applications, to ensure a wide optimization parameter interval

and improve the robustness of sample preparation, it is often necessary to design

metamaterials inversely to achieve optimal microstructures according to desired

spectral responses.25-30 Nevertheless, this inverse problem is difficult to solve

effectively as there is an implicit and sometimes non-unique relationship between



artificial structures and optical responses.

Machine Learning (ML) has recently become a powerful and innovative technique

for complex computational problems and inverse design, i.e., to predict the complete

optical response of photonic structures for given geometric parameters, as well as to

retrieve the optimal design parameters for the desired optical response.31 ML approach

can be applied to strike the balance between excellent spectral characteristics and

manufacture availability, which is beneficial to obtain easy-to-process artificial

structures and hence to reduce the fabrication cost.32-34 Additionally, ML is accurate

and efficient in establishing correlations and sensitivities between numerous design

variables, determining the optimal parameter interval and thus enhancing the

robustness of the material preparation.35-37 Therefore, by utilizing ML, we can

incorporate it into the construction of biomimetic photonic structures to enhance

spectral performance, clarify parametric mechanisms of action, and reduce the cost of

preparation.

In this work, we introduce ML into the design and fabrication of a biomimetic

photonic structure inspired by Batocera LineolatafHope. Specifically, we construct

three SiO2 biomimetic metasurfaces (cylindrical array, truncated cone array, and cone

array). ML was then used to intelligently learn the relation between the spectral

properties and design parameters of different models. ML Results show that the

truncated cone array is more sensitive to the height-to-diameter ratio (H/D) compared

with other models, and thus exhibits better emissivity performance and more robust

processability for the same aspect ratio. Additionally, the emissivity of SiO2



biomimetic metasurfaces constructed using reactive ion etching is comparable to that

of the ML-prediction samples and exhibits impressive radiative cooling properties.

Our model can provide possibilities for the inverse design of biomimetic photonic

materials, opening up a new paradigm for the discovery of complex photonic

structures. Moreover, the preparation of such robust radiative cooling metamaterials is

an important contribution to the standardization of outdoor testing of passive radiative

cooling.

2. Results and Discussions

Spectral tests revealed that Batocera LineolatafHope (BLH) forewings possess an

impressive average emissivity of 0.93 in the 8-13 μm band (Figure S1). Figure 1a

illustrates that the forewings of BLH in the Chinese mountains have a golden sheen

and are capable of regulating body temperature through thermal radiation. Scanning

electron microscope (SEM) images show that the forewings of the BLH are covered

by tiny villi (Figure 1b). The small villi show a cone-like shape with many prismatic

ridges appearing on the surface of the cones, and this structure plays a key role in the

mid-infrared wavelengths for anti-reflection, which is similar to the structure of the

previously studied long-horned beetle (Figure 1c). As revealed by previous studies [19],

the special structure of the biological BLH model generates a gradual refractive index

change, which allows it to exhibit high emissivity in the mid-infrared range.

Following the appearance of biological prototypes, we split the biomimetic structures

into three microarray models as in Figure 1d. Previous studies have largely focused on

the thermal radiation mechanism, yet have neglected to investigate the correlation



between the sensitivity parameters and the spectral characteristics. Moreover, there is

a lack of a well-balanced strategy between spectral performance optimization and

practical processing robustness. To further explore this, machine learning methods

could be employed.
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Figure 1. (a) Photograph and schematic diagram of temperature thermal regulation of

a Batocera LineolatafHope (BLH). (b) and (c) SEM images of the forewing of the

BLH. (d) Microstructure array models derived from biological microscopic models.

Silicon dioxide (SiO2) was chosen as the optimal substrate material because of its

convenience in micro/nanofabrication, its resistance to multiple environments, and the

Si-O stretching vibrations that result in excellent infrared emission.38-40 Inspired by the

biological model, metasurfaces were designed with bulk SiO2 material used as the

substrate and matrix material. Three typical structure models with metasurface

cross-sections (i.e., cylindrical, truncated cone, and cone) are constructed and are

shown in Figures 2a, 2d, and 2g. To obtain the emissivity corresponding to the three

derived models, we apply finite-difference time-domain (FDTD) simulations for each

periodic array model, with the specific boundary conditions shown in Figure S2.

Through the parameter sweep results in Figure S3 and Figure 2b-c, it can be



determined that the highest emissivity is achieved when the cylindrical array has a

diameter of 1.4 μm and a height of 1.6 μm (with a structured period of 2 μm), yielding

an average emissivity of 0.96. For the truncated cone array, the highest average

emissivity (0.985) is obtained from the parameter sweep results in Figure S4 and

Figures 2e-f when the structure height is about 2.8 μm, the diameter at the top is 1 μm

and the diameter at the bottom is 2 μm. Further sweeps for the two structural elements

of the cone array revealed that the best emissivity was achieved with a structure

diameter of 2 μm and a structure height of 5 μm, with an average emissivity of

approximately 0.99 (Figure S5 and Figure 2h-i). The parameter sweeping data

indicates that truncated cone arrays and cone arrays demonstrate superior emissivity,

thus we will focus on analyzing the structural parameters of the biomimetic

metasurface based on these two structures.
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Figure 2. (a) Cylindrical model, (b) Emissivity map vs. cylindrical diameter, and (c)

shows the corresponding average emissivity (8-13 μm wavelength range) plots. (d)

Truncated cone model, and (e) Emissivity map vs. truncated cone top diameter. (f)

show the corresponding average emissivity (8-13 μm wavelength range) plots. (g)

Cone model, (h) Emissivity map vs. cone structure height, and (i) show the

corresponding average emissivity (8-13 μm wavelength range) plots.

We demonstrate the general implementation of machine learning into the optimal

design of biomimetic metamaterials in Figure 3. In principle, the optimal task can be

fulfilled by analytical calculation combined with parametric sweeping, as shown in



Figure 3a. However, such traditional methods may yield a local optimal solution

instead of the global one, and they are usually time-consuming for large optimization

spaces. To accelerate the optimization process and explore optimal biomimetic

microstructures, machine learning methodology is incorporated into the inverse

design process. Herein we use a deep learning model to predict the spectral emissivity

and inversely obtain optimal geometrical parameters for the target spectral response.

The deep learning model is selected due to the non-uniqueness phenomenon of the

spectral response: one identical spectral emissivity may be realized by multiple

distinct geometrical parameters (also referred to as the degeneracy problem), which

will result in convergence difficulties in neural networks that are fed with the spectral

response and output the designed geometrical parameters. Figure 3b illustrates the

deep learning model proposed for the generation and optimization of the SiO2

metasurface. The proposed network is capable of both improving the accuracy of

prediction and extending the model's functionality through its master network, which

facilitates the flow of data in the forward path. Such a model provides a promising

platform to intelligently learn the intrinsic and non-intuitive relation between

biomimetic structures and their optical response from only a few training samples,

thereby circumventing the laborious and step-by-step numerical simulations in

traditional metamaterial design. We establish an initial training dataset, composed of

200 samples obtained from FDTD simulations, to train the deep learning model. The

dataset is split into three groups: for training (80%), for validation (10%), and for final

testing (10%), respectively. Levenberg-Marquardt algorithm is used as the training



algorithm. ML prediction results agree very well with the actual values, demonstrating

the accuracy of the trained deep learning model (Figure 3d). Mean square errors

(MSE) are chosen as the loss functions between the predicted and desired output,

which is displayed with the variation of iterations. The loss functions show rapid

convergence after around 24 epochs, implying the completion of the training phase. In

addition, the three loss functions match well with each other, indicating that no

overfitting problem is encountered.

Due to the degeneracy problem, the backward mapping from spectral responses to

the design geometrical parameters is intractable and requires additional processing. To

tackle this challenge, we encode the biomimetic microstructures into a compact

representation using the well-trained generative model and produce many more

biomimetic microstructures (here 10,000 samples) that are highly “similar” to the

structures in the initial training dataset. Optimal microstructures are exhaustively

searched and obtained from the compact representation. Optimal structural parameters

are obtained for cylinders (H = 1.71 μm, D = 0.28 μm), truncated cones (H = 2.87 μm,

Dbottom = 1.96 μm, Dtop = 0.91 μm), and cones (H = 4.97 μm, D = 1.99 μm),

corresponding to average emissivities of 0.96, 0.985, and 0.99, respectively, as shown

in Figure S6. We further identify the relationship between design parameters and

emission properties for truncated cone arrays, revealing the structural effects on

design principles. Figure 3e reveals a flatter optimization interval (H/Dbottom between

0.8 and 2.4) for truncated cones, compared to the cone arrays, with the slope

estimated to be around 0.006 in the top optimal interval, as opposed to 0.067. This



wider space of optimal parameters will boost the preparation material's robustness. In

addition, the slopes of the truncated cone array and the cone array on the left sides of

the fitting curves are 0.15 and 0.12 (Figure S7), respectively, indicating that the

truncated cones are more sensitive to variations of H/D and will display superior

average emissivity performance when the same aspect ratio is considered. Therefore,

we can primarily conclude that the truncated conical array design is a better candidate

to achieve optimal emission properties.
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Figure 3. Photonic design methodologies with machine learning incorporated. (a)

Optimal design through analytical calculation or simple parametric sweeping. Such a

strategy may not yield satisfactory results, especially for large solution spaces. (b) A

discriminative model that learns the bidirectional mapping of the biomimetic

metamaterials and corresponding spectral responses. Note that backward mapping

from spectral responses to structural parameters can be challenging due to degeneracy

problems. (c) A trained generative model produces far more biomimetic structures that



are similar to the initial training samples. Global optimal solutions are searched and

located from this newly generated extended space, thus avoiding the backward

mapping and degeneracy problem. (d) The accuracy of the trained deep learning

model. (e) Machine learning prediction intensive parameter point: the average

emissivity corresponding to the height-to-diameter ratio (ln(H/Dbottom)) of the

truncated cone array (left), and the average emissivity corresponding to the

height-to-diameter ratio (ln(H/D) of cone array (right).

To gain a better understanding of the results, Figures 4a and 4b illustrate the

relevant distribution of the electric field at the resonance wavelength of 9.3 μm. The

four optimized truncated cone structures are the fundamental structural units, as

demonstrated in the figures. The electric field enhancement is localized around the

truncated cones, thus resulting in an increase in the emissivity of the SiO2 sample with

a metasurface due to the more efficient activation of phonon polarization excitons.

Moreover, at a resonance wavelength of 9.3 μm, the real part of the dielectric constant

(Re(ε)) is less than -1 (Figure S8), resulting in the near-complete absorption of the

incident electromagnetic wave due to the excitation of surface plasmon polaritons

(SPhPs) between the cones. This is evidenced by the electric field distributions in

Figures 4c and 4d, which are strongly confined to the gaps between the cones. Figure

S9 indicates that for microstructured arrays with tilted surfaces, a gradual refractive

index change is usually present, which boosts the emission from the sample surface.

This finding is further supported by the resistive loss (Q) distribution plot at 9.3 μm

wavelength (Figure S10).
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Figure 4. Electric field distribution of SiO2 with truncated cone array at a resonant

single wavelength (9.3 μm): (a) X-Y plane, (b) X-Z plane. Electric field distribution

of SiO2 with cone array at a resonant single wavelength (9.3 μm): (c) X-Y plane, (d)

X-Z plane.

We conducted meticulous preparations of varied models to ensure their practical

applicability. Figure 5 presents SEM images of the samples under different

preparation conditions, both in-plane and cross-section, with the Height (H), Diameter

(D), Aspect ratio (H/D), and the corresponding average emissivity of each sample

displayed in the inset. Results from Figures 5(a)-(e) indicate that cylindrical arrays

with higher aspect ratios have an average emissivity of more than 0.9, while truncated

cone arrays, which are easier to manufacture, exhibit an average emissivity of more

than 0.93 for varied aspect ratios and are highly robustness in their production

(Figures 5(f)-(j)). It has been established in previous studies that the effect of disorder

on the emissivity of the constructed truncated cone structure is relatively weak. [23]



However, the microstructured samples of cone arrays have exhibited poor emissivity

performance due to the height restrictions of the fabrication, as demonstrated in

Figures 5(k)-(o). The above results indicate that the difficulty of fabricating

cylindrical and conical arrays with sizes close to the ML-optimized size due to the

limitations of existing preparation techniques and fabrication precisions leads to

lower-than-expected emissivity. It also demonstrates that the truncated cone model

has a higher emissivity and a more robust processability, which is consistent with the

results of the ML sensitivity analyses. Additionally, the study also demonstrated that

different batches of truncated cone samples had a high IR emissivity, which is a

beneficial characteristic for standardizing radiative cooling devices.
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Figure 5. Samples prepared under different conditions: Constructions of cylindrical

arrays are counted in Figures 5(a)-(d), (e) the corresponding average emissivity;

constructions of truncated cone arrays are counted in Figures 5(f)-(i), (j) the

corresponding average emissivity; and constructions of cone arrays are counted in



Figures 5(k)-(n), (o) the corresponding average emissivity.

To verify the accuracy of the learning results, three different SiO2 metasurface

samples from Figure 5 (blue wireframes were marked) were tested, and the spectra

were compared to the results of ML. The emissivity spectra of the prepared samples,

as shown in Figures 6a-c, generally demonstrate a marked increase in emissivity

compared to bulk SiO2 (0.79), with an average emissivity of 0.9 for the cylindrical

array samples, 0.95 for the truncated cone array samples, and 0.81 for the cone array

samples, which are almost identical to the results of ML. Therefore, the truncated

cone sample is selected as the typical example to validate the radiative cooling effects.

IR thermography measurements were applied to the monitoring of surface

temperature samples with the metasurface. The test setup is depicted in Figure 6d,

wherein each small test chamber is made of a transparent polyethylene sheet, with a

vent on the front side and the other three sides wrapped with aluminum foil. The test

chambers, which are small in size, are situated atop the insulating foam, and various

samples are consecutively placed on the top of the chambers. To complete the

experimental verification process, miniature figurines made of polystyrene are

inserted into the test chamber. At the start (0 min), the surface temperature of all

miniature figurines remained almost the same. Upon attaining thermal equilibrium (30

min), the miniature figurine situated on the metasurface was 8.3 °C cooler than the

one placed in bulk SiO2 and 2.2 °C cooler than the one placed in silver-plated SiO2

(Figure 6e). The reflectance of the SiO2 samples with the metasurface in the solar

band (0.25-2.5 μm) and the theoretical radiative cooling capacity were examined and



calculated (Figure S11). It was observed that the SiO2 samples with the metasurface

showed more than 95% reflectance and a cooling capacity of 8.5 °C (non-radiative

cooling coefficient h = 12 W m-1), which is close to the experimentally verified results

(8.3 °C). Results demonstrate that the SiO2 samples with the metasurface are highly

effective in achieving radiative cooling. Furthermore, the truncated cone samples were

remarkably hydrophobic in comparison to the bulk SiO2 samples, which is an

advantageous characteristic for outdoor utilization (Figure S12).
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Figure 6. The simulated and experimental IR emissivity spectra (8-13 μm) of SiO2

samples (From the blue wireframe marker samples in Figure 5) with (a) cylindrical

arrays, (b) truncated cone arrays, and (c) cone arrays. (d) Optical photographs of



samples tested for infrared thermography (from left to right, silver-plated metasurface

(truncated microcone array samples), silver-plated SiO2 sample, and Bulk SiO2 sample)

and schematic diagram of the outdoor test setup. (e) Infrared thermography of

different samples exposed to direct sunlight for a period of 0 min and 30 min.

3. Conclusion

In this paper, we present a deep generative model that is capable of addressing the

biomimetic metamaterial design problem. A discriminative model is developed to

learn the bidirectional mapping between biomimetic metamaterials and their

corresponding spectral responses. To avoid degeneracy issues, we encode the

metamaterial design into a large latent space, which leads to a probabilistic

representation of the metamaterial. This allows us to search for and locate optimal

structures in the latent space, thus solving the one-to-many mapping problem in the

inverse direction. Our proposed method yielded optimal structural parameters for

cylinders, truncated cones, and cones, resulting in an average emissivity of 0.96,

0.985, and 0.99, respectively. This is a significant improvement compared to pure

SiO2 materials and even compared to imitative creatures. The improved spectral

emissivity was verified through simulations and experiments. We fabricated truncated

microcone array samples and experimentally demonstrated their excellent radiative

cooling performance. Experimental and ML studies have demonstrated that truncated

cone arrays are highly robust for increasing the emissivity of SiO2. Our proposed

fabrication method for biomimetic metamaterials can expedite the process of

designing and optimizing robust radiative cooling metamaterials, making them



suitable for standardized passive radiation cooling applications. This data-driven

approach is an efficient technique that can be used to expedite the design,

optimization, and discovery of biomimetic metamaterials, photonic devices, and

radiative manipulation capabilities.

4. Experimental section

Materials: This work employed a 40×40×1 mm3 quartz (SiO2) block sourced from

Aladdin Company. Silver ingot particles (Ag) were procured from Tim (Beijing) New

Materials Technology Co. Ltd. whereas analytical grade chemicals such as ethanol

(C2H5OH), polystyrene spheres (PS), sodium dodecylbenzene sulfate (SDS) and

acetone (CH3COCH3) were obtained from Tianjin Tianli Chemical Reagent Co. The

etching process was facilitated by argon (Ar, 99.99%), nitrogen (N2, 99.99%), and

trifluoromethane (CHF3, 99.99%) provided by Harbin Liming Gas Co.

Preparation of SiO2 Metasurface (cylindrical arrays, truncated conical arrays,

conical arrays): For the fabrication of SiO2 metasurfaces, such as cylindrical arrays,

and truncated conical arrays, annealed silver micro-nanospheres are used as the

etching mask. The size of the silver spheres can be adjusted by controlling the

thickness of the silver, and the period of the silver spheres can be regulated by

adjusting the annealing time and temperature (550 °C with a holding time of 2 hours).

Additionally, for the construction of cylindrical arrays, and conical arrays, liquid

surface self-assembled microspheres of 2 μm polystyrene (PS) are used to construct

the mask. Further details of the experimental methodology can be found in prior

studies.23, 41



Characterization and Measurements: A SIGMA 300 Scanning Electron Microscope

(SEM) (Zeiss, Germany) was utilized to evaluate the micromorphology of the

prepared samples. A Fourier Transform Infrared Spectrometer (FTIR) with an A562

Integrating Sphere was employed to measure the infrared spectral reflectance of the

samples within the wavelength range of 2.5 to 25 μm. Additionally, a Tix660 Infrared

Thermal Imager (Fluke) was used to capture thermal images of the samples in the

spectral range of 7.5-14 μm.

Simulation: The spectral properties of the designed emitter were calculated using the

Finite-Difference Time-Domain (FDTD) method for electromagnetic waves from the

Lumerical software package. Parametric sweeping of all metasurface structures was

conducted using the same method, with a plane-wave light source for illumination,

whose propagation and polarization directions were along the negative Z and X axes,

respectively. Periodic boundary conditions were set in the X- and Y-axes and

Perfectly Matched Layer boundary conditions were set along the Z-axis. The mesh

type was a uniform mesh, with the maximum mesh step set to 25 nm and the auto-off

value set to 1e-5. The dielectric constants of Ag and SiO2 were taken from Palik

(1991).

Machine Learning: Artificial neuron network (ANN) and Gaussian process regression

(GPR) have both been employed in this study. ANN and GPR are well-established

data-driven techniques for building ML models of biomimetic metamaterials.

Artificial neural networks, inspired by neurons in biological brains, are built on

collections of connected units called artificial neurons. GPR depends on the



assumption that the uncertain predictive function is modeled by sampling from a

multivariate Gaussian distribution and maintaining the posterior distribution upon

observation.42 Other machine learning algorithms, such as random forest and support

vector models are tested with the initial dataset for their performance. We use the

coefficient of determination (R2) and root-mean-square errors (RMSE) to evaluate the

reliability of the established models, which are defined as

�2 = 1 − �=1
� �� − ��'

2
�

�=1
� �� − ��''

2�

and

���� = �=1
� �� − ��'

2
�

�

where �� and ��' are respectively the actual value and predicted value over the same

sample, ��'' is the mean value of objective functions and m is the total number of

sampling points. Results show that the GPR model has the smallest value of

root-mean-square deviation, i.e., the performance of the GPR model is optimal

compared with other machine learning models.
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