4,379 research outputs found
Non-perturbative renormalisation and running of BSM four-quark operators in Nf=2 QCD
We perform a non-perturbative study of the scale-dependent renormalisation factors of a complete set of dimension-six four-fermion operators without power subtractions. The renormalisation-group (RG) running is determined in the continuum limit for a specific Schrödinger Functional (SF) renormalisation scheme in the framework of lattice QCD with two dynamical flavours (Nf= 2). The theory is regularised on a lattice with a plaquette Wilson action and O(a)-improved Wilson fermions. For one of these operators, the computation had been performed in Dimopoulos et al. (JHEP 0805, 065 (2008). arXiv:0712.2429); the present work completes the study for the rest of the operator basis, on the same simulations (configuration ensembles). The related weak matrix elements arise in several operator product expansions; in Δ F= 2 transitions they contain the QCD long-distance effects, including contributions from beyond-Standard Model (BSM) processes. Some of these operators mix under renormalisation and their RG-running is governed by anomalous dimension matrices. In Papinutto et al. (Eur Phys J C 77(6), 376 (2017). arXiv:1612.06461) the RG formalism for the operator basis has been worked out in full generality and the anomalous dimension matrix has been calculated in NLO perturbation theory. Here the discussion is extended to the matrix step-scaling functions, which are used in finite-size recursive techniques. We rely on these matrix-SSFs to obtain non-perturbative estimates of the operator anomalous dimensions for scales ranging from O(Λ QCD) to O(MW)
Flavor Changing Neutral Currents in a Realistic Composite Technicolor Model
We consider the phenomenology of a composite technicolor model proposed
recently by Georgi. Composite technicolor interactions produce four-quark
operators in the low energy theory that contribute to flavor changing neutral
current processes. While we expect operators of this type to be induced at the
compositeness scale by the flavor-symmetry breaking effects of the preon mass
matrices, the Georgi model also includes operators from higher scales that are
not GIM-suppressed. Since these operators are potentially large, we study their
impact on flavor changing neutral currents and CP violation in the neutral ,
, and meson systems.Comment: 16 pages, LaTeX + embedded PicTeX figures requiring prepictex,
pictex, and postpictex inputs. HUTP.STY include
Discovering New Physics in the Decays of Black Holes
If the scale of quantum gravity is near a TeV, the LHC will be producing one
black hole (BH) about every second, thus qualifying as a BH factory. With the
Hawking temperature of a few hundred GeV, these rapidly evaporating BHs may
produce new, undiscovered particles with masses ~100 GeV. The probability of
producing a heavy particle in the decay depends on its mass only weakly, in
contrast with the exponentially suppressed direct production. Furthemore, BH
decays with at least one prompt charged lepton or photon correspond to the
final states with low background. Using the Higgs boson as an example, we show
that it may be found at the LHC on the first day of its operation, even with
incomplete detectors.Comment: 4 pages, 3 figure
Comparison of LISA and Atom Interferometry for Gravitational Wave Astronomy in Space
One of the atom interferometer gravitational wave missions proposed by
Dimopoulos et al.1 in 2008 was called AGIS-Sat. 2. It had a suggested
gravitational wave sensitivity set by the atom state detection shot noise level
that started at 1 mHz, was comparable to LISA sensitivity from 1 to about 20
mHz, and had better sensitivity from 20 to 500 mHz. The separation between the
spacecraft was 1,000 km, with atom interferometers 200 m long and shades from
sunlight used at each end. A careful analysis of many error sources was
included, but requirements on the time-stability of both the laser wavefront
aberrations and the atom temperatures in the atom clouds were not investigated.
After including these considerations, the laser wavefront aberration stability
requirement to meet the quoted sensitivity level is about 1\times10-8
wavelengths, and is far tighter than for LISA. Also, the temperature
fluctuations between atom clouds have to be less than 1 pK. An alternate atom
interferometer GW mission in Earth orbit called AGIS-LEO with 30 km satellite
separation has been suggested recently. The reduction of wavefront aberration
noise by sending the laser beam through a high-finesse mode-scrubbing optical
cavity is discussed briefly, but the requirements on such a cavity are not
given. Unfortunately, such an Earth-orbiting mission seems to be considerably
more difficult to design than a non-geocentric mission and does not appear to
have comparably attractive scientific goals.Comment: Submitted to Proc. 46th Rencontres de Moriond: Gravitational Waves
and Experimental Gravity, March 20 - 27, 2011, La Thuile, Ital
Sneutrino condensate as a candidate for the hot big bang cosmology
If inflationary paradigm is correct, then it must create conditions for the
hot big bang model with all observed matter, baryons and the seed perturbations
for the structure formation. In this paper we propose a scenario where the
inflaton energy density is dumped into the bulk in a brane world setup, and all
the required physical conditions are created by the right handed neutrino
sector within supersymmetry. The scalar component of the right handed Majorana
neutrino is responsible for generating the scale invariant fluctuations in the
cosmic microwave background radiation, reheating the Universe at a
temperature~ GeV, and finally generating the lepton/baryon
asymmetry, , with no lepton/baryon isocurvature
fluctuations.Comment: 19 pages, 3 figures. Some discussion on neutrino masses and
baryogenesis, and other small changes adde
A New Technique for Detecting Supersymmetric Dark Matter
We estimate the event rate for excitation of atomic transition by
photino-like dark matter. For excitations of several eV, this event rate can
exceed naive cross-section by many orders of magnitude. Although the event rate
for these atomic excitation is smaller than that of nuclear recoil off of
non-zero spin nuclei, the photons emitted by the deexcitation are easier to
detect than low-energy nuclear recoils. For many elements, there are several
low-lying states with comparable excitation rates, thus, spectral ratios could
be used to distinguish signal from background.Comment: 6 pages plain te
Single-photon signals at LEP in supersymmetric models with a light gravitino
We study the single-photon signals expected at LEP in models with a very
light gravitino. The dominant process is neutralino-gravitino production (e+e-
-> chi+ G) with subsequent neutralino decay via chi->gamma+G, giving a
gamma+E_miss signal. We first calculate the cross section at arbitrary
center-of-mass energies and provide new analytic expressions for the
differential cross section valid for general neutralino compositions. We then
consider the constraints on the gravitino mass from LEP 1 and LEP161
single-photon searches, and possible such searches at the Tevatron. We show
that it is possible to evade the stringent LEP 1 limits and still obtain an
observable rate at LEP 2, in particular in the region of parameter space that
may explain the CDF e+e+gamma+gamma+E_T,miss event. As diphoton events from
neutralino pair-production would not be kinematically accessible in this
scenario, the observation of whichever photonic signal will discriminate among
the various light-gravitino scenarios in the literature. We also perform a
Monte Carlo simulation of the expected energy and angular distributions of the
emitted photon, and of the missing invariant mass expected in the events.
Finally we specialize the results to the case of a recently proposed
one-parameter no-scale supergravity model.Comment: 31 pages, LaTeX, 14 figures (included
Implications of Low Energy Supersymmetry Breaking at the Tevatron
The signatures for low energy supersymmetry breaking at the Tevatron are
investigated. It is natural that the lightest standard model superpartner is an
electroweak neutralino, which decays to an essentially massless Goldstino and
photon, possibly within the detector. In the simplest models of gauge-mediated
supersymmetry breaking, the production of right-handed sleptons, neutralinos,
and charginos leads to a pair of hard photons accompanied by leptons and/or
jets with missing transverse energy. The relatively hard leptons and softer
photons of the single e^+e^- \gamma \gamma + \EmissT event observed by CDF
implies this event is best interpreted as arising from left-handed slepton pair
production. In this case the rates for l^{\pm} \gamma \gamma + \EmissT and
\gamma \gamma + \EmissT are comparable to that for l^+l^- \gamma \gamma +
\EmissT.Comment: 18 pages, Latex, tables correcte
Predictions for Higgs and SUSY spectra from SO(10) Yukawa Unification with mu > 0
We use Yukawa unification to constrain SUSY parameter space. We
find a narrow region survives for (suggested by \bsgam and the
anomalous magnetic moment of the muon) with , , \gev and \gev. Demanding Yukawa unification thus makes definite predictions for
Higgs and sparticle masses.Comment: 10 pages, 3 figures, revised version to be published in PR
- …
