223 research outputs found

    Specific absorption rate in neonates undergoing magnetic resonance procedures at 1.5 T and 3 T.

    Get PDF
    MRI is finding increased clinical use in neonatal populations; the extent to which electromagnetic models used for quantification of specific absorption rate (SAR) by commercial MRI scanners accurately reflect this alternative scenario is unclear. This study investigates how SAR predictions relating to adults can be related to neonates under differing conditions when imaged using 1.5 T and 3 T MRI scanners. Electromagnetic simulations were produced in neonatal subjects of different sizes and positions within a generic MRI body transmit device operating at both 64 MHz and 128 MHz, corresponding to 1.5 T and 3 T MRI scanners, respectively. An adult model was also simulated, as was a spherical salt‐water phantom, which was also used in a calorimetry experiment. The SAR in neonatal subjects was found to be less than that experienced in an adult in all scenarios; however, the overestimation factor was variable. For example a 3 T body scan resulting in local 10 g SAR of 10.1 W kg(−1) in an adult would deposit 2.6 W kg(−1) in a neonate: an approximately fourfold difference. The SAR experienced by neonatal subjects undergoing MRI is lower than that in adults in equivalent situations. If the safety of such procedures is assessed using adult‐appropriate models then the result is a conservative estimate. © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd

    Phase Relaxed Localized Excitation Pulses for Inner Volume Fast Spin Echo Imaging

    Get PDF
    PURPOSE: To design multidimensional spatially selective radiofrequency (RF) pulses for inner volume imaging (IVI) with three‐dimensional (3D) fast spin echo (FSE) sequences. Enhanced background suppression is achieved by exploiting particular signal properties of FSE sequences. THEORY AND METHODS: The CPMG condition dictates that echo amplitudes will rapidly decrease if a 90° phase difference between excitation and refocusing pulses is not present, and refocusing flip angles are not precisely 180°. This mechanism is proposed as a means for generating additional background suppression for spatially selective excitation, by biasing residual excitation errors toward violating the CPMG condition. 3D RF pulses were designed using this method with a 3D spherical spiral trajectory, under‐sampled by factor 5.6 for an eight‐channel PTx system, at 3 Tesla. RESULTS: 3D‐FSE IVI with pulse durations of approximately 12 ms was demonstrated in phantoms and for T(2)‐weighted brain imaging in vivo. Good image quality was obtained, with mean background suppression factors of 103 and 82 ± 6 in phantoms and in vivo, respectively. CONCLUSION: Inner Volume Imaging with 3D‐FSE has been demonstrated in vivo with tailored 3D‐RF pulses. The proposed design methods are also applicable to 2D pulses. Magn Reson Med 76:848–861, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicin

    Patient-specific RF safety assessment in MRI: Progress in creating surface-based human head and shoulder models

    No full text
    The interaction of electromagnetic (EM) fields with the human body during magnetic resonance imaging (MRI) is complex and subject specific. MRI radiofrequency (RF) coil performance and safety assessment typically includes numerical EM simulations with a set of human body models. The dimensions of mesh elements used for discretization of the EM simulation domain must be adequate for correct representation of the MRI coil elements, different types of human tissue, and wires and electrodes of additional devices. Examples of such devices include those used during electroencephalography, transcranial magnetic stimulation, and transcranial direct current stimulation, which record complementary information or manipulate brain states during MRI measurement. The electrical contact within and between tissues, as well as between an electrode and the skin, must also be preserved. These requirements can be fulfilled with anatomically correct surface-based human models and EM solvers based on unstructured meshes. Here, we report (i) our workflow used to generate the surface meshes of a head and torso model from the segmented AustinMan dataset, (ii) head and torso model mesh optimization for three-dimensional EM simulation in ANSYS HFSS, and (iii) several case studies of MRI RF coil performance and safety assessment

    Acute Exposure to Terrestrial Trunked Radio (TETRA) has effects on the electroencephalogram and electrocardiogram, consistent with vagal nerve stimulation

    Get PDF
    BACKGROUND: Terrestrial Trunked Radio (TETRA) is a telecommunications system widely used by police and emergency services around the world. The Stewart Report on mobile telephony and health raised questions about possible health effects associated with TETRA signals. This study investigates possible effects of TETRA signals on the electroencephalogram and electrocardiogram in human volunteers. METHODS: Blinded randomized provocation study with a standardized TETRA signal or sham exposure. In the first of two experiments, police officers had a TETRA set placed first against the left temple and then the upper-left quadrant of the chest and the electroencephalogram was recorded during rest and active cognitive processing. In the second experiment, volunteers were subject to chest exposure of TETRA whilst their electroencephalogram and heart rate variability derived from the electrocardiogram were recorded. RESULTS: In the first experiment, we found that exposure to TETRA had consistent neurophysiological effects on the electroencephalogram, but only during chest exposure, in a pattern suggestive of vagal nerve stimulation. In the second experiment, we observed changes in heart rate variability during exposure to TETRA but the electroencephalogram effects were not replicated. CONCLUSIONS: Observed effects of exposure to TETRA signals on the electroencephalogram (first experiment) and electrocardiogram are consistent with vagal nerve stimulation in the chest by TETRA. However given the small effect on heart rate variability and the lack of consistency on the electroencephalogram, it seems unlikely that this will have a significant impact on health. Long-term monitoring of the health of the police force in relation to TETRA use is on-going
    corecore