30 research outputs found

    Mechanistic Insight into the Enzymatic Reduction of Truncated Hemoglobin N of Mycobacterium tuberculosis: role of the CD loop and pre-A Motif in electron cycling

    Get PDF
    Background: The HbN of Mycobacterium tuberculosis carries a potent nitric-oxide dioxygenase activity despite lacking a reductase domain. Results: The NADH-ferredoxin reductase system acts as an efficient partner for the reduction of HbN. Conclusion: The interactions of HbN with the reductase are modulated by its CD loop and the Pre-A region. Significance: The present study provides new insights into the mechanism of electron transfer during nitric oxide detoxification by HbN.Fil: Singh, Sandeep. Institute of Microbial Technology; IndiaFil: Thakur, Naveen. Institute of Microbial Technology; IndiaFil: Oliveira, Ana. Universidad de Barcelona; EspañaFil: Petruk, Ariel Alcides. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Hade, Mangesh Dattu. Institute of Microbial Technology; IndiaFil: Sethi, Deepti. Institute of Microbial Technology; IndiaFil: Bidon Chanal, Axel. Universidad de Barcelona; EspañaFil: Marti, Marcelo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Datta, H.. Institute of Microbial Technology; IndiaFil: Parkesh, R.. Institute of Microbial Technology; IndiaFil: Estrin, Dario Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Luque, F. Javier. Universidad de Barcelona; EspañaFil: Dikshit, Kanak L.. Institute of Microbial Technology; Indi

    Role of PheE15 gate in ligand entry and nitric oxide detoxification function of Mycobacterium tuberculosis truncated hemoglobin N

    Get PDF
    The truncated hemoglobin N, HbN, of Mycobacterium tuberculosis is endowed with a potent nitric oxide dioxygenase (NOD) activity that allows it to relieve nitrosative stress and enhance in vivo survival of its host. Despite its small size, the protein matrix of HbN hosts a two-branched tunnel, consisting of orthogonal short and long channels, that connects the heme active site to the protein surface. A novel dual-path mechanism has been suggested to drive migration of O(2) and NO to the distal heme cavity. While oxygen migrates mainly by the short path, a ligand-induced conformational change regulates opening of the long tunnel branch for NO, via a phenylalanine (PheE15) residue that acts as a gate. Site-directed mutagenesis and molecular simulations have been used to examine the gating role played by PheE15 in modulating the NOD function of HbN. Mutants carrying replacement of PheE15 with alanine, isoleucine, tyrosine and tryptophan have similar O(2)/CO association kinetics, but display significant reduction in their NOD function. Molecular simulations substantiated that mutation at the PheE15 gate confers significant changes in the long tunnel, and therefore may affect the migration of ligands. These results support the pivotal role of PheE15 gate in modulating the diffusion of NO via the long tunnel branch in the oxygenated protein, and hence the NOD function of HbN

    Truncated hemoglobin, HbN, is post-translationally modified in Mycobacterium tuberculosis and modulates host-pathogen interactions during intracellular infection

    Get PDF
    Mycobacterium tuberculosis (Mtb) is a phenomenally successful human pathogen having evolved mechanisms that allow it to survive within the hazardous environment of macrophages and establish long term, persistent infection in the host against the control of cell-mediated immunity. One such mechanism is mediated by the truncated hemoglobin, HbN, of Mtb that displays a potent O2-dependent nitric oxide dioxygenase activity and protects its host from the toxicity of macrophage-generated nitric oxide (NO). Here we demonstrate for the first time that HbN is post-translationally modified by glycosylation in Mtb and remains localized on the cell membrane and the cell wall. The glycan linkage in the HbN was identified as mannose. The elevated expression of HbN in Mtb and M. smegmatis facilitated their entry within the macrophages as compared with isogenic control cells, and mutation in the glycan linkage of HbN disrupted this effect. Additionally, HbN-expressing cells exhibited higher survival within the THP-1 and mouse peritoneal macrophages, simultaneously increasing the intracellular level of proinflammatory cytokines IL-6 and TNF-α and suppressing the expression of co-stimulatory surface markers CD80 and CD86. These results, thus, suggest the involvement of HbN in modulating the host-pathogen interactions and immune system of the host apart from protecting the bacilli from nitrosative stress inside the activated macrophages, consequently driving cells toward increased infectivity and intracellular survival

    Reduced metal nanocatalysts for selective electrochemical hydrogenation of biomass-derived 5-(hydroxymethyl)furfural to 2,5-bis(hydroxymethyl)furan in ambient conditions

    Get PDF
    Selective electrochemical hydrogenation (ECH) of biomass-derived unsaturated organic molecules has enormous potential for sustainable chemical production. However, an efficient catalyst is essential to perform an ECH reaction consisting of superior product selectivity and a higher conversion rate. Here, we examined the ECH performance of reduced metal nanostructures, i.e., reduced Ag (rAg) and reduced copper (rCu) prepared via electrochemical or thermal oxidation and electrochemical reduction process, respectively. Surface morphological analysis suggests the formation of nanocoral and entangled nanowire structure formation for rAg and rCu catalysts. rCu exhibits a slight enhancement in ECH reaction performance in comparison to the pristine Cu. However, the rAg exhibits more than two times higher ECH performance without compromising the selectivity for 5-(HydroxyMethyl) Furfural (HMF) to 2,5-bis(HydroxyMethyl)-Furan (BHMF) formation in comparison to the Ag film. Moreover, a similar ECH current density was recorded at a reduced working potential of 220 mV for rAg. This high performance of rAg is attributed to the formation of new catalytically active sites during the Ag oxidation and reduction processes. This study demonstrates that rAg can potentially be used for the ECH process with minimum energy consumption and a higher production rate

    Usage of lime sludge waste from paper industry for production of Portland cement Clinker: Sustainable expansion of Indian cement industry

    No full text
    The incorporation of lime sludge from the paper and pulp industry for the manufacturing of clinker in the cement industry is considered a more environmentally friendly option which is not acceptable due to stricter environmental norms. The cement clinkerization in the raw mix designs by utilizing different dosages of lime sludge, ranging from 0 to 50 (per cent by weight), together with other raw materials like limestone, clay, bauxite, and laterite with Lime saturation factor-LSF in between 92.87 and 93.26, Silica Modulus-SM in between 2.19 and 2.37 and Alumina Modulus-AM in between 1.12 and 1.14. The estimated free lime (CaOf) and mineral phase analyses on all lab-fired clinkers at 1350 °C, 1400 °C, and 1450 °C were done by X-ray diffraction and the phases conform with optical microscopy. The clinker fired at 1450 °C has more alite (C3S) phase in the range of (37–59% by weight) and less free lime in the desirable limit. The cement prepared using this lab-fired clinker imparts desirable mechanical strength. Here, lime sludge was incorporated as a raw material in the design of the raw mix for Portland cement clinker production, and it was discovered that the quality of the produced cement was within OPC's acceptable range in the limiting of cement quality. This has diminished lime sludge in the environment although it is still possible to consider it an acceptable alternative to limestone

    Physiological Basis of Combined Stress Tolerance to Low Phosphorus and Drought in a Diverse Set of Mungbean Germplasm

    No full text
    To understand the physiological basis of tolerance to combined stresses to low phosphorus (P) and drought in mungbean (Vignaradiata (L.) R. Wilczek), a diverse set of 100 accessions were evaluated in hydroponics at sufficient (250 μM) and low (3 μM) P and exposed to drought (dehydration) stress. The principal component analysis and ranking of accessions based on relative values revealed that IC280489, EC397142, IC76415, IC333090, IC507340, and IC121316 performed superior while IC119005, IC73401, IC488526, and IC325853 performed poorly in all treatments. Selected accessions were evaluated in soil under control (sufficient P, irrigated), low P (without P, irrigated), drought (sufficient P, withholding irrigation), and combined stress (low P, withholding irrigation). Under combined stress, a significant reduction in gas exchange traits (photosynthesis, stomatal conductance, transpiration, instantaneous water use efficiency) and P uptake in seed and shoot was observed under combined stress as compared to individual stresses. Among accessions, IC488526 was most sensitive while IC333090 and IC507340 exhibited tolerance to individual or combined stress. The water balance and low P adaptation traits like membrane stability index, relative water content, specific leaf weight, organic acid exudation, biomass, grain yield, and P uptake can be used as physiological markers to evaluate for agronomic performance. Accessions with considerable tolerance to low P and drought stress can be either used as ‘donors’ in Vigna breeding program or cultivated in areas with limited P and water availability or both

    Evaluation of Ayush-64 (a Polyherbal Formulation) and Its Ingredients in the Syrian Hamster Model for SARS-CoV-2 Infection Reveals the Preventative Potential of <i>Alstonia scholaris</i>

    No full text
    In the current study, we evaluated the efficacy of Ayush-64 (A64), a polyherbal formulation containing Alstonia scholaris (L.) R. Br. (A. scholaris), Caesalpinia crista L. (C. crista), Picrorhiza kurroa Royle ex Benth (P. kurroa), and Swertia chirata (Roxb.) H. Karst. (S. chirata) against COVID-19 in a Syrian hamster infection model. Preventative use of A64 resulted in the late-phase recovery of body weight loss in severe acquired respiratory syndrome coronavirus-2 (SARS-CoV-2)-infected hamsters, suppression of pro-inflammatory cytokines, and blunted pulmonary pathology. In addition, we also investigated the efficacy of individual ingredients of A64, viz., A. scholaris, C. crista, P. kurroa, and S. chirata, in the hamster model. The hamster challenge data showed robust anti-viral and immunomodulatory potential in A. scholaris, followed by P. kurroa. However, C. crista and S. chirata of A64 showed prominent immunomodulatory potential without limiting the lung viral load. In order to better understand the immunomodulatory potential of these herbal extracts, we used an in vitro assay of helper T cell differentiation and found that A. scholaris mediated a more profound suppression of Th1, Th2, and Th17 cell differentiation as compared to A64 and other ingredients. Taken together, our animal study data identifies the ameliorative potential of A64 in mitigating coronavirus disease-19 (COVID-19) pulmonary pathology. A. scholaris, a constituent extract of A64, showed relatively higher anti-viral and immunomodulatory potential against COVID-19. The present study warrants further investigations to identify the active pharmaceutical ingredients of A. scholaris for further studies

    Cross tolerance to phosphorus deficiency and drought stress in mungbean is regulated by improved antioxidant capacity, biological N2‑fixation, and differential transcript accumulation

    No full text
    Not AvailableAims: Phosphorus (P) mobility depends on the availability of water in soil, both of which are limited resources for crop production. We studied the mechanisms governing tolerance to P-deficiency and drought stress in contrasting mungbean accessions. Methods: Tolerant (IC333090 and IC507340) and sensitive (IC488526 and EC397142) mungbean accessions were grown in soil under four treatments: control (sufficient P, irrigated), P-deficiency (no P, irrigated), drought (sufficient P, irrigation withheld), combined stress (no P, irrigation withheld), followed by a 48 h recovery. Results: Drought stress reduced the relative water content and membrane stability index, affecting overall plant growth. The tolerant accessions maintained significantly higher root growth, leaf area, and biomass under combined stress (P-deficiency and drought) than the sensitive accessions, mainly due to enhanced nutrient uptake and symbiotic N2-fixation. The combined stress also increased osmolyte concentration, antioxidative compounds, and the scavenging activity of antioxidant enzymes in tolerant accessions. Recovery from drought stress significantly reduced osmolyte concentration. Transcript abundance of candidate genes related to P-deficiency and drought under individual and combined stress, was significantly higher in leaves of IC333090 than IC488526. IC333090 recovered from drought stress better than IC488526 due to the enhanced expression of stress responsive genes. Conclusions: Physiological traits, such as the accumulation of total soluble sugars and reduced glutathione, ascorbate, and scavenging activity of antioxidant enzymes, facilitated by the differential expression of stress responsive genes impart cross-tolerance to P-deficiency and drought stress in tolerant mungbean accessions. Hence, accession IC333090 is potential genetic stock for tolerance to drought, P-deficiency, and combined stresses.Not Availabl

    Role of PheE15 gate in ligand entry and nitric oxide detoxification function of mycobacterium tuberculosis truncated hemoglobin N.

    Get PDF
    The truncated hemoglobin N, HbN, of Mycobacterium tuberculosis is endowed with a potent nitric oxide dioxygenase (NOD) activity that allows it to relieve nitrosative stress and enhance in vivo survival of its host. Despite its small size, the protein matrix of HbN hosts a two-branched tunnel, consisting of orthogonal short and long channels, that connects the heme active site to the protein surface. A novel dual-path mechanism has been suggested to drive migration of O(2) and NO to the distal heme cavity. While oxygen migrates mainly by the short path, a ligand-induced conformational change regulates opening of the long tunnel branch for NO, via a phenylalanine (PheE15) residue that acts as a gate. Site-directed mutagenesis and molecular simulations have been used to examine the gating role played by PheE15 in modulating the NOD function of HbN. Mutants carrying replacement of PheE15 with alanine, isoleucine, tyrosine and tryptophan have similar O(2)/CO association kinetics, but display significant reduction in their NOD function. Molecular simulations substantiated that mutation at the PheE15 gate confers significant changes in the long tunnel, and therefore may affect the migration of ligands. These results support the pivotal role of PheE15 gate in modulating the diffusion of NO via the long tunnel branch in the oxygenated protein, and hence the NOD function of HbN

    Role of PheE15 gate in ligand entry and nitric oxide detoxification function of Mycobacterium tuberculosis truncated hemoglobin N

    No full text
    The truncated hemoglobin N, HbN, of Mycobacterium tuberculosis is endowed with a potent nitric oxide dioxygenase (NOD) activity that allows it to relieve nitrosative stress and enhance in vivo survival of its host. Despite its small size, the protein matrix of HbN hosts a two-branched tunnel, consisting of orthogonal short and long channels, that connects the heme active site to the protein surface. A novel dual-path mechanism has been suggested to drive migration of O(2) and NO to the distal heme cavity. While oxygen migrates mainly by the short path, a ligand-induced conformational change regulates opening of the long tunnel branch for NO, via a phenylalanine (PheE15) residue that acts as a gate. Site-directed mutagenesis and molecular simulations have been used to examine the gating role played by PheE15 in modulating the NOD function of HbN. Mutants carrying replacement of PheE15 with alanine, isoleucine, tyrosine and tryptophan have similar O(2)/CO association kinetics, but display significant reduction in their NOD function. Molecular simulations substantiated that mutation at the PheE15 gate confers significant changes in the long tunnel, and therefore may affect the migration of ligands. These results support the pivotal role of PheE15 gate in modulating the diffusion of NO via the long tunnel branch in the oxygenated protein, and hence the NOD function of HbN
    corecore