7,182 research outputs found

    A heuristic optimization method for mitigating the impact of a virus attack

    Get PDF
    Taking precautions before or during the start of a virus outbreak can heavily reduce the number of infected. The question which individuals should be immunized in order to mitigate the impact of the virus on the rest of population has received quite some attention in the literature. The dynamics of the of a virus spread through a population is often represented as information spread over a complex network. The strategies commonly proposed to determine which nodes are to be selected for immunization often involve only one centrality measure at a time, while often the topology of the network seems to suggest that a single metric is insufficient to capture the influence of a node entirely. In this work we present a generic method based on a genetic algorithm (GA) which does not rely explicitly on any centrality measures during its search but only exploits this type of information to narrow the search space. The fitness of an individual is defined as the estimated expected number of infections of a virus following SIR dynamics. The proposed method is evaluated on two contact networks: the Goodreau's Faux Mesa high school and the US air transportation network. The GA method manages to outperform the most common strategies based on a single metric for the air transportation network and its performance is comparable with the best performing strategy for the high school network.Comment: To appear in the proceedings of the International Conference on Computational Science (ICCS) in Barcelona. 11 pages, 5 figure

    Efficiency of fat deposition from nonstarch polysaccharides, starch and unsaturated fat in pig

    Get PDF
    The aim was to evaluate under protein-limiting conditions the effect of different supplemental energy sources: fermentable NSP (fNSP), digestible starch (dStarch) and digestible unsaturated fat (dUFA), on marginal efficiency of fat deposition and distribution. A further aim was to determine whether the extra fat deposition from different energy sources, and its distribution in the body, depends on feeding level. A total of fifty-eight individually housed pigs (48 (sd 4) kg) were used in a 3 x 2 factorial design study, with three energy sources (0.2 MJ digestible energy (DE)/kg0.75 per d of fNSP, dStarch and dUFA added to a control diet) at two feeding levels. Ten pigs were slaughtered at 48 (sd 4) kg body weight and treatment pigs at 106 (sd 3) kg body weight. Bodies were dissected and the chemical composition of each body fraction was determined. The effect of energy sources on fat and protein deposition was expressed relative to the control treatments within both energy intake levels based on a total of thirty-two observations in six treatments, and these marginal differences were subsequently treated as dependent variables. Results showed that preferential deposition of the supplemental energy intake in various fat depots did not depend on the energy source, and the extra fat deposition was similar at each feeding level. The marginal energetic transformation (energy retention; ER) of fNSP, dStarch and dUFA for fat retention (ERfat:DE) was 44, 52 and 49 % (P>0.05), respectively. Feeding level affected fat distribution, but source of energy did not change the relative partitioning of fat deposition. The present results do not support values of energetic efficiencies currently used in net energy-based system

    On the Detectability of the Hydrogen 3-cm Fine Structure Line from the EoR

    Full text link
    A soft ultraviolet radiation field, 10.2 eV < E <13.6 eV, that permeates neutral intergalactic gas during the Epoch of Reionization (EoR) excites the 2p (directly) and 2s (indirectly) states of atomic hydrogen. Because the 2s state is metastable, the lifetime of atoms in this level is relatively long, which may cause the 2s state to be overpopulated relative to the 2p state. It has recently been proposed that for this reason, neutral intergalactic atomic hydrogen gas may be detected in absorption in its 3-cm fine-structure line (2s_1/2 -> 2p_3/2) against the Cosmic Microwave Background out to very high redshifts. In particular, the optical depth in the fine-structure line through neutral intergalactic gas surrounding bright quasars during the EoR may reach tau~1e-5. The resulting surface brightness temperature of tens of micro K (in absorption) may be detectable with existing radio telescopes. Motivated by this exciting proposal, we perform a detailed analysis of the transfer of Lyman beta,gamma,delta,... radiation, and re-analyze the detectability of the fine-structure line in neutral intergalactic gas surrounding high-redshift quasars. We find that proper radiative transfer modeling causes the fine-structure absorption signature to be reduced tremendously to tau< 1e-10. We therefore conclude that neutral intergalactic gas during the EoR cannot reveal its presence in the 3-cm fine-structure line to existing radio telescopes.Comment: 7 pages, 4 figures, MNRAS in press; v2. some typos fixe

    Inference of the Russian drug community from one of the largest social networks in the Russian Federation

    Full text link
    The criminal nature of narcotics complicates the direct assessment of a drug community, while having a good understanding of the type of people drawn or currently using drugs is vital for finding effective intervening strategies. Especially for the Russian Federation this is of immediate concern given the dramatic increase it has seen in drug abuse since the fall of the Soviet Union in the early nineties. Using unique data from the Russian social network 'LiveJournal' with over 39 million registered users worldwide, we were able for the first time to identify the on-line drug community by context sensitive text mining of the users' blogs using a dictionary of known drug-related official and 'slang' terminology. By comparing the interests of the users that most actively spread information on narcotics over the network with the interests of the individuals outside the on-line drug community, we found that the 'average' drug user in the Russian Federation is generally mostly interested in topics such as Russian rock, non-traditional medicine, UFOs, Buddhism, yoga and the occult. We identify three distinct scale-free sub-networks of users which can be uniquely classified as being either 'infectious', 'susceptible' or 'immune'.Comment: 12 pages, 11 figure

    Numerical Solution of Hard-Core Mixtures

    Full text link
    We study the equilibrium phase diagram of binary mixtures of hard spheres as well as of parallel hard cubes. A superior cluster algorithm allows us to establish and to access the demixed phase for both systems and to investigate the subtle interplay between short-range depletion and long-range demixing.Comment: 4 pages, 2 figure

    Crystallization in suspensions of hard spheres: A Monte Carlo and Molecular Dynamics simulation study

    Get PDF
    The crystallization of a metastable melt is one of the most important non equilibrium phenomena in condensed matter physics, and hard sphere colloidal model systems have been used for several decades to investigate this process by experimental observation and computer simulation. Nevertheless, there is still an unexplained discrepancy between simulation data and experimental nucleation rate densities. In this paper we examine the nucleation process in hard spheres using molecular dynamics and Monte Carlo simulation. We show that the crystallization process is mediated by precursors of low orientational bond-order and that our simulation data fairly match the experimental data sets

    Wall-Fluid and Liquid-Gas Interfaces of Model Colloid-Polymer Mixtures by Simulation and Theory

    Full text link
    We perform a study of the interfacial properties of a model suspension of hard sphere colloids with diameter σc\sigma_c and non-adsorbing ideal polymer coils with diameter σp\sigma_p. For the mixture in contact with a planar hard wall, we obtain from simulations the wall-fluid interfacial free energy, γwf\gamma_{wf}, for size ratios q=σp/σc=0.6q=\sigma_p/\sigma_c=0.6 and 1, using thermodynamic integration, and study the (excess) adsorption of colloids, Γc\Gamma_c, and of polymers, Γp\Gamma_p, at the hard wall. The interfacial tension of the free liquid-gas interface, γlg\gamma_{lg}, is obtained following three different routes in simulations: i) from studying the system size dependence of the interfacial width according to the predictions of capillary wave theory, ii) from the probability distribution of the colloid density at coexistence in the grand canonical ensemble, and iii) for statepoints where the colloidal liquid wets the wall completely, from Young's equation relating γlg\gamma_{lg} to the difference of wall-liquid and wall-gas interfacial tensions, γwl−γwg\gamma_{wl}-\gamma_{wg}. In addition, we calculate γwf,Γc\gamma_{wf}, \Gamma_c, and Γp\Gamma_p using density functional theory and a scaled particle theory based on free volume theory. Good agreement is found between the simulation results and those from density functional theory, while the results from scaled particle theory quantitatively deviate but reproduce some essential features. Simulation results for γlg\gamma_{lg} obtained from the three different routes are all in good agreement. Density functional theory predicts γlg\gamma_{lg} with good accuracy for high polymer reservoir packing fractions, but yields deviations from the simulation results close to the critical point.Comment: 23 pages, 10 figures, REVTEX. Fig 5a changed. Final versio

    The Role of Community in Understanding Involvement in Community Energy Initiatives

    Get PDF
    Community energy initiatives are set up by volunteers in local communities to promote sustainable energy behaviors and help to facilitate a sustainable energy transition. A key question is what motivates people to be involved in such initiatives. We propose that next to a stronger personal motivation for sustainable energy, people’s perception that their community is motivated to engage in sustainable energy and their involvement in the community (i.e., community identification and interpersonal contact) may affect their initiative involvement. We tested this proposition with a questionnaire study among inhabitants of seven local communities (N = 439). Results suggested that community factors are uniquely related to initiative involvement (willingness to actively participate and attendance of an initiative meeting) next to personal sustainable energy motivations. In particular, stronger community identification and more interpersonal contact with other community members increased the likelihood that people become involved in a community initiative, but the perception of the sustainable energy motivation of one’s community was not uniquely related to initiative involvement. We discuss theoretical and practical implications of these findings

    Phase behaviour of charged colloidal sphere dispersions with added polymer chains

    Full text link
    We study the stability of mixtures of highly screened repulsive charged spheres and non-adsorbing ideal polymer chains in a common solvent using free volume theory. The effective interaction between charged colloids in an aqueous salt solution is described by a screened-Coulomb pair potential, which supplements the pure hard-sphere interaction. The ideal polymer chains are treated as spheres that are excluded from the colloids by a hard-core interaction, whereas the interaction between two ideal chains is set to zero. In addition, we investigate the phase behaviour of charged colloid-polymer mixtures in computer simulations, using the two-body (Asakura-Oosawa pair potential) approximation to the effective one-component Hamiltonian of the charged colloids. Both our results obtained from simulations and from free volume theory show similar trends. We find that the screened-Coulomb repulsion counteracts the effect of the effective polymer-mediated attraction. For mixtures of small polymers and relatively large charged colloidal spheres, the fluid-crystal transition shifts to significantly larger polymer concentrations with increasing range of the screened-Coulomb repulsion. For relatively large polymers, the effect of the screened-Coulomb repulsion is weaker. The resulting fluid-fluid binodal is only slightly shifted towards larger polymer concentrations upon increasing the range of the screened-Coulomb repulsion. In conclusion, our results show that the miscibility of dispersions containing charged colloids and neutral non-adsorbing polymers increases, upon increasing the range of the screened-Coulomb repulsion, or upon lowering the salt concentration, especially when the polymers are small compared to the colloids.Comment: 25 pages,13 figures, accepted for publication on J.Phys.:Condens. Matte

    Phase behavior and structure of model colloid-polymer mixtures confined between two parallel planar walls

    Full text link
    Using Gibbs ensemble Monte Carlo simulations and density functional theory we investigate the fluid-fluid demixing transition in inhomogeneous colloid-polymer mixtures confined between two parallel plates with separation distances between one and ten colloid diameters covering the complete range from quasi two-dimensional to bulk-like behavior. We use the Asakura-Oosawa-Vrij model in which colloid-colloid and colloid-polymer interactions are hard-sphere like, whilst the pair potential between polymers vanishes. Two different types of confinement induced by a pair of parallel walls are considered, namely either through two hard walls or through two semi-permeable walls that repel colloids but allow polymers to freely penetrate. For hard (semi-permeable) walls we find that the capillary binodal is shifted towards higher (lower) polymer fugacities and lower (higher) colloid fugacities as compared to the bulk binodal; this implies capillary condensation (evaporation) of the colloidal liquid phase in the slit. A macroscopic treatment is provided by a novel symmetric Kelvin equation for general binary mixtures, based on the proximity in chemical potentials of statepoints at capillary coexistence and the reference bulk coexistence. Results for capillary binodals compare well with those obtained from the classic version of the Kelvin equation due to Evans and Marini Bettolo Marconi [J. Chem. Phys. 86, 7138 (1987)], and are quantitatively accurate away from the fluid-fluid critical point, even at small wall separations. For hard walls the density profiles of polymers and colloids inside the slit display oscillations due to packing effects for all statepoints. For semi-permeable walls either similar structuring or flat profiles are found, depending on the statepoint considered.Comment: 15 pages, 13 figure
    • …
    corecore