524 research outputs found

    Transforming Through Reflection: Use of Student-Led Reflections in the Development of Intercultural Competence during a Short-Term International Immersion Experience

    Get PDF
    ABSTRACT Purpose: Curricular integration designed to include cultural competence standards for health care professionals is paramount to preparing students to meet the needs of a growing diverse population in the U.S. The purpose of this research is to examine the cultural competency development of occupational therapy students, and to report on their reflections and perspectives during a two-week immersive and service-learning experience in Guatemala. Methods: As intercultural competence is a highly personal trait, the study used a descriptive qualitative research design gaining participantsā€™ perspectives of the short-term international immersion experience through student-led reflective focus groups, using an open discussion format, during the immersion experience. Results: Data analysis yielded three themes: Do, Experience, Understand; Change Factor; and Future Action that represent the student perspective in a cultural immersion experience. The first theme: Do, Experience, Understand encompassed participantsā€™ discussion of how fully engaging in a culture different than their own was necessary to understand differences and commonalities. The second theme: Change Factor included expressions of dissonance in level of physical, emotional, and mental comfort that prompted a transformation within the student. The final theme: Future Action, described a tangible outcome from the immersion experience. By engaging with a different culture, participants experienced a transformation, leading to sharing of their desire to continue their advocacy efforts on behalf of others. Conclusion: Reflection became a key element in the transformative nature of the learning experience. It became obvious that a safe environment in which to share dreams, doubts, cultural missteps and successful moments was necessary for coping with feelings of dissonance. The safe sharing environment added to the cohesiveness of the group, lowered anxiety and provided opportunities for learning. Participantsā€™ verbalized descriptions of transformative learning necessary in the development of intercultural competency during an international cultural immersion experience. By participating in a cultural immersion experience integrated into their curricular program, students began to articulate cultural competencies required to consider multiples lenses, perspectives and backgrounds of their future clients

    Recursion Relations in Liouville Gravity coupled to Ising Model satisfying Fusion Rules

    Full text link
    The recursion relations of 2D quantum gravity coupled to the Ising model discussed by the author previously are reexamined. We study the case in which the matter sector satisfies the fusion rules and only the primary operators inside the Kac table contribute. The theory involves unregularized divergences in some of correlators. We obtain the recursion relations which form a closed set among well-defined correlators on sphere, but they do not have a beautiful structure that the bosonized theory has and also give an inconsistent result when they include an ill-defined correlator with the divergence. We solve them and compute the several normalization independent ratios of the well-defined correlators, which agree with the matrix model results.Comment: Latex, 22 page

    Boundary states for a free boson defined on finite geometries

    Full text link
    Langlands recently constructed a map that factorizes the partition function of a free boson on a cylinder with boundary condition given by two arbitrary functions in the form of a scalar product of boundary states. We rewrite these boundary states in a compact form, getting rid of technical assumptions necessary in his construction. This simpler form allows us to show explicitly that the map between boundary conditions and states commutes with conformal transformations preserving the boundary and the reality condition on the scalar field.Comment: 16 pages, LaTeX (uses AMS components). Revised version; an analogy with string theory computations is discussed and references adde

    SU(m) non-Abelian anyons in the Jain hierarchy of quantum Hall states

    Full text link
    We show that different classes of topological order can be distinguished by the dynamical symmetry algebra of edge excitations. Fundamental topological order is realized when this algebra is the largest possible, the algebra of quantum area-preserving diffeomorphisms, called W1+āˆžW_{1+\infty}. We argue that this order is realized in the Jain hierarchy of fractional quantum Hall states and show that it is more robust than the standard Abelian Chern-Simons order since it has a lower entanglement entropy due to the non-Abelian character of the quasi-particle anyon excitations. These behave as SU(mm) quarks, where mm is the number of components in the hierarchy. We propose the topological entanglement entropy as the experimental measure to detect the existence of these quantum Hall quarks. Non-Abelian anyons in the Ī½=2/5\nu = 2/5 fractional quantum Hall states could be the primary candidates to realize qbits for topological quantum computation.Comment: 5 pages, no figures, a few typos corrected, a reference adde

    Perturbation Theory in Two Dimensional Open String Field Theory

    Full text link
    In this paper we develop the covariant string field theory approach to open 2d strings. Upon constructing the vertices, we apply the formalism to calculate the lowest order contributions to the 4- and 5- point tachyon--tachyon tree amplitudes. Our results are shown to match the `bulk' amplitude calculations of Bershadsky and Kutasov. In the present approach the pole structure of the amplitudes becomes manifest and their origin as coming from the higher string modes transparent.Comment: 26 page

    Entropy flow in near-critical quantum circuits

    Full text link
    Near-critical quantum circuits are ideal physical systems for asymptotically large-scale quantum computers, because their low energy collective excitations evolve reversibly, effectively isolated from the environment. The design of reversible computers is constrained by the laws governing entropy flow within the computer. In near-critical quantum circuits, entropy flows as a locally conserved quantum current, obeying circuit laws analogous to the electric circuit laws. The quantum entropy current is just the energy current divided by the temperature. A quantum circuit made from a near-critical system (of conventional type) is described by a relativistic 1+1 dimensional relativistic quantum field theory on the circuit. The universal properties of the energy-momentum tensor constrain the entropy flow characteristics of the circuit components: the entropic conductivity of the quantum wires and the entropic admittance of the quantum circuit junctions. For example, near-critical quantum wires are always resistanceless inductors for entropy. A universal formula is derived for the entropic conductivity: \sigma_S(\omega)=iv^{2}S/\omega T, where \omega is the frequency, T the temperature, S the equilibrium entropy density and v the velocity of `light'. The thermal conductivity is Real(T\sigma_S(\omega))=\pi v^{2}S\delta(\omega). The thermal Drude weight is, universally, v^{2}S. This gives a way to measure the entropy density directly.Comment: 2005 paper published 2017 in Kadanoff memorial issue of J Stat Phys with revisions for clarity following referee's suggestions, arguments and results unchanged, cross-posting now to quant-ph, 27 page

    Cyclic dinucleotides bind the C-linker of HCN4 to control channel cAMP responsiveness

    Get PDF
    cAMP mediates autonomic regulation of heart rate by means of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which underlie the pacemaker current If. cAMP binding to the C-terminal cyclic nucleotide binding domain enhances HCN open probability through a conformational change that reaches the pore via the C-linker. Using structural and functional analysis, we identified a binding pocket in the C-linker of HCN4. Cyclic dinucleotides, an emerging class of second messengers in mammals, bind the C-linker pocket (CLP) and antagonize cAMP regulation of the channel. Accordingly, cyclic dinucleotides prevent cAMP regulation of If in sinoatrial node myocytes, reducing heart rate by 30%. Occupancy of the CLP hence constitutes an efficient mechanism to hinder Ī²-adrenergic stimulation on If. Our results highlight the regulative role of the C-linker and identify a potential drug target in HCN4. Furthermore, these data extend the signaling scope of cyclic dinucleotides in mammals beyond their first reported role in innate immune system

    State-Dependent Accessibility of the P-S6 Linker of Pacemaker (HCN) Channels Supports a Dynamic Pore-to-Gate Coupling Model

    Get PDF
    The hyperpolarization-activated cyclic nucleotide-modulated channel gene family (HCN1-4) encodes the membrane depolarizing current that underlies pacemaking. Although the topology of HCN resembles Kv channels, much less is known about their structure-function correlation. Previously, we identified several pore residues in the S5-P linker and P-loop that are externally accessible and/or influence HCN gating, and proposed an evolutionarily conserved pore-to-gate mechanism. Here we sought dynamic evidence by assessing the functional consequences of Cys-scanning substitutions in the unexplored P-S6 linker (residues 352ā€“359), the HCN1-R background (that is, resistant to sulfhydryl-reactive agents). None of A352C, Q353C, A354C, P355C, V356C, S357C, M358C, or S359C produced functional currents; the loss-of-function of Q353C, A354C, S357C, and M358C could be rescued by the reducing agent dithiothreitol. Q353C, A354C, and S357C, but not M358C and HCN1-R, were sensitive to Cd2+ blockade (IC50Ā =Ā 3ā€“12Ā Ī¼M vs. >1Ā mM). External application of the positively charged covalent sulfhydryl modifier MTSET irreversibly reduced Iāˆ’140mV of Q353C and A354C to 27.9Ā Ā±Ā 3.4% and 58.2Ā Ā±Ā 13.1% of the control, respectively, and caused significant steady-state activation shifts (āˆ†V1/2Ā =Ā ā€“21.1Ā Ā±Ā 1.6 for Q353C and āˆ’10.0Ā Ā±Ā 2.9Ā mV for A354C). Interestingly, MTSET reactivity was also state dependent. MTSET, however, affected neither S357C nor M358C, indicating site specificity. Collectively, we have identified novel P-S6 residues whose extracellular accessibility was sterically and state dependent and have provided the first functional evidence consistent with a dynamic HCN pore-to-gate model

    Efficient Numerical Schemes for Computing Cardiac Electrical Activation over Realistic Purkinje Networks: Method and Verification

    Get PDF
    We present a numerical solver for the fast conduction system in the heart using both a CPU and a hybrid CPU/GPU implementation. To verify both implementations, we construct analytical solutions and show that the L2-error is similar in both implementations and decreases linearly with the spatial step size. Finally, we test the performance of the implementations with networks of varying complexity, where the hybrid implementation is, on average, 5.8 times faster

    Embryonic stem cell-derived CD166+ precursors develop into fully functional sinoatrial-like cells

    Get PDF
    Rationale: A cell-based biological pacemaker is based on the differentiation of stem cells and the selection of a population displaying the molecular and functional properties of native sinoatrial node (SAN) cardiomyocytes. So far, such selection has been hampered by the lack of proper markers. CD166 is specifically but transiently expressed in the mouse heart tube and sinus venosus, the prospective SAN. Objective: We have explored the possibility of using CD166 expression for isolating SAN progenitors from differentiating embryonic stem cells. Methods and Results: We found that in embryonic day 10.5 mouse hearts, CD166 and HCN4, markers of the pacemaker tissue, are coexpressed. Sorting embryonic stem cells for CD166 expression at differentiation day 8 selects a population of pacemaker precursors. CD166(+) cells express high levels of genes involved in SAN development (Tbx18, Tbx3, Isl-1, Shox2) and function (Cx30.2, HCN4, HCN1, CaV1.3) and low levels of ventricular genes (Cx43, Kv4.2, HCN2, Nkx2.5). In culture, CD166(+) cells form an autorhythmic syncytium composed of cells morphologically similar to and with the electrophysiological properties of murine SAN myocytes. Isoproterenol increases (+57%) and acetylcholine decreases (-23%) the beating rate of CD166-selected cells, which express the -adrenergic and muscarinic receptors. In cocultures, CD166-selected cells are able to pace neonatal ventricular myocytes at a rate faster than their own. Furthermore, CD166(+) cells have lost pluripotency genes and do not form teratomas in vivo. Conclusions: We demonstrated for the first time the isolation of a nonteratogenic population of cardiac precursors able to mature and form a fully functional SAN-like tissue
    • ā€¦
    corecore