17 research outputs found

    Excited-State Dynamics in Borylated Arylisoquinoline Complexes in Solution and in cellulo

    Get PDF
    Two four-coordinate organoboron N,C-chelate complexes with different functional terminals on the PEG chains are studied with respect to their photophysical properties within human MCF-7 cells. Their excited-state properties are characterized by time-resolved pump-probe spectroscopy and fluorescence lifetime microscopy. The excited-state relaxation dynamics of the two complexes are similar when studied in DMSO. Aggregation of the complexes with the carboxylate terminal group is observed in water. When studying the light-driven excited-state dynamics of both complexes in cellulo, i. e., after being taken up into human MCF-7 cells, both complexes show different features depending on the nature of the anchoring PEG chains. The lifetime of a characteristic intramolecular charge-transfer state is significantly shorter when studied in cellulo (360±170 ps) as compared to in DMSO (∼960 ps) at 600 nm for the complexes with an amino group. However, the kinetics of the complexes with the carboxylate group are in line with those recorded in DMSO. On the other hand, the lifetimes of the fluorescent state are almost identical for both complexes in cellulo. These findings underline the importance to evaluate the excited-state properties of fluorophores in a complex biological environment in order to fully account for intra- and intermolecular effects governing the light-induced processes in functional dyes.This work was supported by the European Union (via the ITN LogicLab funded under the Horizon 2020 research and innovation program under the grant agreement No 813920). We thank Prof. Dr. Rainer Heintzmann and Dr. Benedict Diederich for providing BioLab facilities and supporting the image acquisition. The ELYRA 7 (used for producing Figure 3 and S8) was funded by the Free State of Thuringia with grant number 2019 FGI 0003 and supported by the Microverse Imaging Center (funded by the DFG under Germany Âs Excellence Strategy �R EXC 2051 �R Project-ID 390713860). We further acknowledge funding by the DFG (Project number 316213987 – SFB 1278, INST 1757/25-1 FUGG), the Free State of Thuringia (TAB, TMWWDG, AdvancedSTED/2018 FGI 0022; Advanced Flu-Spec/ 2020 FGI 0031), BMBF (Photonics Research Germany (FKZ; 3N15713/13N15717) integrated into the Leibniz Center for Photonics in Infection Research (LPI)) and the innovation program by the German BMWi (ZIM; project 16KN070934 / Labon- a-chip FCS-Easy). The Spanish Ministerio de Ciencia e Innovación (grants PID2020-119992GB-I00, PID2019-106358GBC21, and PID2019-106358GB-C22), the Consejo Superior de Investigaciones Científicas (grant 202080I005 for A.R.), and the Junta de Andalucía/University of Huelva (grant UHU-202070) are thanked for financial support. We thank Dr. Z. Dom Nguez for assistance in the early stage of this project. Open Access funding enabled and organized by Projekt DEAL

    Reductive Activation of Aryl Chlorides by Tuning the Radical Cation Properties of N ‐Phenylphenothiazines as Organophotoredox Catalysts

    Get PDF
    Aryl chlorides as substrates for arylations present a particular challenge for photoredox catalytic activation due to their strong C(sp2^2)−Cl bond and their strong reduction potential. Electron-rich N-phenylphenothiazines, as organophotoredox catalysts, are capable of cleaving aryl chlorides simply by photoinduced electron transfer without the need for an additional electrochemical activation setup or any other advanced photocatalysis technique. Due to the extremely strong reduction potential in the excited state of the N-phenylphenothiazines the substrate scope is high and includes aryl chlorides both with electron-withdrawing and electron-donating substituents. We evidence this reactivity for photocatalytic borylations and phosphonylations. Advanced time-resolved transient absorption spectroscopy in combination with electrochemistry was the key to elucidating and comparing the unusual photophysical properties not only of the N-phenylphenothiazines, but also of their cation radicals as the central intermediates in the photocatalytic cycle. The revealed photophysics allowed the excited-state and radical-cation properties to be fine-tuned by the molecular design of the N-phenylphenothiazines; this improved the photocatalytic activity

    Photophysical Study on the Rigid Pt(II) Complex [Pt(naphen)(Cl)] (Hnaphen = Naphtho[1,2-b][1,10]Phenanthroline and Derivatives

    Get PDF
    The electrochemistry and photophysics of the Pt(II) complexes [Pt(naphen)(X)] (Hnaphen = naphtho[1,2-b][1,10]phenanthroline, X = Cl or C≡CPh) containing the rigid tridentate C^N^N-coordinating pericyclic naphen ligand was studied alongside the complexes of the tetrahydro-derivative [Pt(thnaphen)(X)] (Hthnaphen = 5,6,8,9-tetrahydro-naphtho[1,2-b][1,10]phenanthroline) and the N^C^N-coordinated complex [Pt(bdq)(Cl)] (Hbdq = benzo[1,2-h:5,4-h’]diquinoline. The cyclic voltammetry showed reversible reductions for the C^N^N complexes, with markedly fewer negative potentials (around −1.6 V vs. ferrocene) for the complexes containing the naphen ligand compared with the thnaphen derivatives (around −1.9 V). With irreversible oxidations at around +0.3 V for all of the complexes, the naphen made a difference in the electrochemical gap of about 0.3 eV (1.9 vs. 2.2 eV) compared with thnaphen. The bdq complex was completely different, with an irreversible reduction at around −2 V caused by the N^C^N coordination pattern, which lacked a good electron acceptor such as the phenanthroline unit in the C^N^N ligand naphen. Long-wavelength UV-Vis absorption bands were found around 520 to 530 nm for the C^N^N complexes with the C≡CPh coligand and were red-shifted when compared with the Cl derivatives. The N^C^N-coordinated bdq complex was markedly blue-shifted (493 nm). The steady-state photoluminescence spectra showed poorly structured emission bands peaking at around 630 nm for the two naphen complexes and 570 nm for the thnaphen derivatives. The bdq complex showed a pronounced vibrational structure and an emission maximum at 586 nm. Assuming mixed 3LC/3MLCT excited states, the vibronic progression for the N^C^N bdq complex indicated a higher LC character than assumed for the C^N^N-coordinated naphen and thnaphen complexes. The blue-shift was a result of the different N^C^N vs. C^N^N coordination. The photoluminescence lifetimes and quantum yields ΦL massively increased from solutions at 298 K (0.06 to 0.24) to glassy frozen matrices at 77 K (0.80 to 0.95). The nanosecond time-resolved study on [Pt(naphen)(Cl)] showed a phosphorescence emission signal originating from the mixed 3LC/3MLCT with an emission lifetime of around 3 µs

    Pyrimidoquinazolinophenanthroline Opens Next Chapter in Design of Bridging Ligands for Artificial Photosynthesis **

    Get PDF
    The synthesis and detailed characterization of a new Ru polypyridine complex containing a heteroditopic bridging ligand with previously unexplored metal‐metal distances is presented. Due to the twisted geometry of the novel ligand, the resultant division of the ligand in two distinct subunits leads to steady state as well as excited state properties of the corresponding mononuclear Ru(II) polypyridine complex resembling those of prototype [Ru(bpy) 3 ] 2+ (bpy=2,2'‐bipyridine). The localization of the initially optically excited and the nature of the long‐lived excited states on the Ru‐facing ligand spheres is evaluated by resonance Raman and fs‐TA spectroscopy, respectively, and supported by DFT and TDDFT calculations. Coordination of a second metal (Zn or Rh) to the available bis‐pyrimidyl‐like coordination sphere strongly influences the frontier orbitals, apparent by, for example, luminescence quenching. Thus, the new bridging ligand motif offers electronic properties, which can be adjusted by the nature of the second metal center. Using the heterodinuclear Ru−Rh complex, visible light‐driven reduction of NAD + to NADH was achieved, highlighting the potential of this system for photocatalytic applications

    Photoinduced electron transfer in triazole-bridged donor-acceptor dyads - A critical perspective

    No full text
    International audienceIn recent years, dyads in which molecular donor and acceptor moieties are chemically linked by a bridg-ing ligand have emerged as attractive systems for light-driven catalysis. Their modular structure, control-lable donor-acceptor distance, and their ability to undergo light-driven charge transfer, which is not limited by diffusion, render such systems promising in light-driven charge-transfer reactions and light -driven redox catalysis. Copper-catalyzed alkyne azide cycloaddition (CuAAC) is a particularly popular synthetic strategy for coupling donor and acceptor moieties. This CLICK chemistry approach yields dyads with a 1,2,3-triazole bridging motif. In this review, we discuss the complex role played by this triazole linker to drive electron transfer (eT) in a respective triazole-bridged donor-acceptor dyad upon photoex-citation. We review how structural and electronic properties of the bridge influence charge separation and recombination rates. Furthermore, the role of the triazole bridge energetics in thermal as well as oxidative and reductive photoinduced eT will be discussed. Finally, criteria for the design of dyads with different eT properties are derive

    Not that innocent – ammonium ions boost homogeneous light-driven hydrogen evolution

    No full text
    We report that the homogeneous light-driven hydrogen evolution reaction (HER) can be significantly enhanced by the presence of seemingly innocent ammonium (NH4+) cations. Expermiental studies with different catalysts, photosensitizers and electron donors show this to be a general effect. Preliminary photophysical and mechanistic studies provide initial suggestions regarding the role of ammonium in the HER enhancement

    Triplet-triplet annihilation upconversion for calcium sensing

    No full text
    Triplet-triplet annihilation upconversion is a bimolecular process converting low-energy light into high-energy one. All available calcium probes, despite their qualities, are downconverting, which leads to the autofluorescence caused by background emission of the intra- and intercellular molecules. Here we report a calcium-sensing system working via upconverted emission. The probe itself was obtained by covalent conjugation of a perylene blue emitter with a calcium-chelating moiety; it was sensitized by a red-light absorbing palladium porphyrin. Sensing was selective towards Ca2+ and occurred in the micromolar domain in aqueous solutions and methanol. The upconverted luminescence only appeared in the presence of calcium ions, with a quantum yield of up to 0.0018
    corecore