83 research outputs found

    E.S. Dietrichs og medarbeidere svarer

    Get PDF

    Aggravated stuttering following subthalamic deep brain stimulation in Parkinson's disease - two cases

    Get PDF
    Stuttering is a speech disorder with disruption of verbal fluency which is occasionally present in patients with Parkinson's disease (PD). Long-term medical management of PD is frequently complicated by fluctuating motor functions and dyskinesias. High-frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment of motor fluctuations and is the most common surgical procedure in PD. Here we report the re-occurrence and aggravation of stuttering following STN-DBS in two male patients treated for advanced PD. In both patients the speech fluency improved considerably when the neurostimulator was turned off, indicating that stuttering aggravation was related to neurostimulation of the STN itself, its afferent or efferent projections and/or to structures localized in the immediate proximity. This report supports previous studies demonstrating that lesions of the basal ganglia-thalamocortical motor circuit, including the STN, is involved in the development of stuttering. In advanced PD STN-DBS is generally an effective and safe treatment. However, patients with PD and stuttering should be informed about the risk of aggravated symptoms following surgical therapy

    Pregnancy-related pelvic girdle pain: an update

    Get PDF
    A large number of scientists from a wide range of medical and surgical disciplines have reported on the existence and characteristics of the clinical syndrome of pelvic girdle pain during or after pregnancy. This syndrome refers to a musculoskeletal type of persistent pain localised at the anterior and/or posterior aspect of the pelvic ring. The pain may radiate across the hip joint and the thigh bones. The symptoms may begin either during the first trimester of pregnancy, at labour or even during the postpartum period. The physiological processes characterising this clinical entity remain obscure. In this review, the definition and epidemiology, as well as a proposed diagnostic algorithm and treatment options, are presented. Ongoing research is desirable to establish clear management strategies that are based on the pathophysiologic mechanisms responsible for the escalation of the syndrome's symptoms to a fraction of the population of pregnant women

    Behavioural Significance of Cerebellar Modules

    Get PDF
    A key organisational feature of the cerebellum is its division into a series of cerebellar modules. Each module is defined by its climbing input originating from a well-defined region of the inferior olive, which targets one or more longitudinal zones of Purkinje cells within the cerebellar cortex. In turn, Purkinje cells within each zone project to specific regions of the cerebellar and vestibular nuclei. While much is known about the neuronal wiring of individual cerebellar modules, their behavioural significance remains poorly understood. Here, we briefly review some recent data on the functional role of three different cerebellar modules: the vermal A module, the paravermal C2 module and the lateral D2 module. The available evidence suggests that these modules have some differences in function: the A module is concerned with balance and the postural base for voluntary movements, the C2 module is concerned more with limb control and the D2 module is involved in predicting target motion in visually guided movements. However, these are not likely to be the only functions of these modules and the A and C2 modules are also both concerned with eye and head movements, suggesting that individual cerebellar modules do not necessarily have distinct functions in motor control

    Hypothalamocerebellar and cerebellohypothalamic projections - circuits for regulating nonsomatic cerebellar activity.

    No full text
    Cerebellar involvement in visceral and affective responses is known from physiological and behavioral studies, but the pathways involved in these responses have remained enigmatic. Over the last ten years neuroanatomical studies have shown that the cerebellum and hypothalamus are interconnected by direct hypothalamocerebellar and cerebellohypothalamic projections and by a multitude of indirect pathways. The hypothalamocerebellar projection terminates in the cerebellar nuclei and in all layers of the cerebellar cortex as multilayered fibres. This projection is, at least in part, histaminergic. New immunocytochemical experiments indicate that small numbers of hypothalamocerebellar neurones may contain GABA- or glycine-like immunoreactivity. GABA may function as a transmitter in hypothalamocerebellar fibres, probably in conjunction with histamine, but it is not clear whether glycine may also function as a transmitter or only serve metabolic functions. The bidirectional pathways between the cerebellum and hypothalamus may be part of the circuits through which the cerebellum participates in the modulation of a variety of nonsomatic events. In addition, new observations on patients with well localized cerebellar lesions reveal simultaneous somatic and visceral dysfunction. Recent research on direct hypothalamocerebellar pathways and on other connections between hypothalamus and cerebellum is reviewed. It is hypothesized that the cerebellum may act as a general modulator and coordinator of a wide range of central nervous activities, somatic as well as nonsomatic

    Intramuscular uptake of tranexamic acid during haemorrhagic shock in a swine model

    Get PDF
    Background Tranexamic acid (TXA) reduce mortality in bleeding trauma patients, with greater effect if administered early. Serum concentrations above 10 µg/mL are considered sufficient to inhibit fibrinolysis. Normally administered intravenously (i.v.), TXA can also be administered intramuscularly (i.m.). This could be advantageous in low resource and military settings, if sufficient serum concentrations can be reached in shocked patients with reduced muscular blood perfusion. Accordingly, we aimed to: (1) Determine the impact of shock on the pharmacokinetics of i.m. TXA, and (2) Compare the pharmacokinetics of i.v. versus i.m. TXA in ongoing shock. Materials and methods In a prospective experimental study, N = 18 Norwegian landrace pigs (40–50 kg), utilised in a surgical course in haemostatic emergency surgery, were subjected to various abdominal and thoracic trauma. After 1 h of surgery the animals were given 15 mg/kg TXA either i.v. or i.m. A control group without injury, or surgery, received intramuscular TXA. Blood samples were drawn at 0, 5, 15, 25, 35, 45, 60 and 85 min. The samples were centrifuged and analysed with liquid chromatography–tandem mass spectrometry (LC–MS/MS) for TXA serum-concentrations. Results In shocked pigs, i.m. administration resulted in a mean maximum serum concentration (Cmax) of 20.9 µg/mL, and i.v. administration a Cmax of 48.1 µg/mL. Cmax occurred 15 min after i.m. administration and 5 min after i.v. administration. In non-shocked swine, i.m. administration resulted in a Cmax of 36.9 µg/mL after 15 min. In all groups, mean TXA serum concentrations stayed above 10 µg/mL from administration to end of experiments. Conclusions I.m. administration of TXA in shocked pigs provides serum concentrations associated with inhibition of fibrinolysis. It may be an alternative to i.v. and intraosseous administration during stabilisation and transport of trauma patients to advanced medical care
    • …
    corecore