25 research outputs found

    Morphometry of the Cranial Base in Subjects with Class III Malocclusion

    Full text link
    The significance of the cranial base in the development of Class III malocclusion remains uncertain. The purpose of this study was to determine whether the form of the cranial base differs between prepubertal Class I and Class III subjects. Lateral cephalographs of 73 children of European-American descent aged between 5 and 11 years with Class III malocclusion were compared with those of their counterparts with a normal, Class I molar occlusion. The cephalographs were traced, checked, and subdivided into seven age- and sex-matched groups. Average geometries, scaled to an equivalent size, were generated based on 13 craniofacial landmarks by means of Procrustes analysis, and these configurations were statistically tested for equivalence. Bivariate and multivariate analyses utilizing 5 linear and angular measurements were undertaken to corroborate the Procrustes analysis. Graphical analysis, utilizing thin-plate spline and finite element methods, was performed for localization of differences in cranial base morphology. Results indicated that cranial base morphology differed statistically for all age-wise comparisons. Graphical analysis revealed that the greatest differences in morphology occurred in the posterior cranial base region, which generally consisted of horizontal compression, vertical expansion, and size contraction. The sphenoidal region displayed expansion, while the anterior regions showed shearing and local increases in size. It is concluded that the shape of the cranial base differs in subjects with Class III malocclusion compared with the normal Class I configuration, due in part to deficient orthocephalization, or failure of the cranial base to flatten during development.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67377/2/10.1177_00220345970760021101.pd

    European Multicentre Tics in Children Studies (EMTICS): protocol for two cohort studies to assess risk factors for tic onset and exacerbation in children and adolescents

    Get PDF
    Genetic predisposition, autoimmunity and environmental factors [e.g. pre- and perinatal difficulties, Group A Streptococcal (GAS) and other infections, stress-inducing events] might interact to create a neurobiological vulnerability to the development of tics and associated behaviours. However, the existing evidence for this relies primarily on small prospective or larger retrospective population-based studies, and is therefore still inconclusive. This article describes the design and methodology of the EMTICS study, a longitudinal observational European multicentre study involving 16 clinical centres, with the following objectives: (1) to investigate the association of environmental factors (GAS exposure and psychosocial stress, primarily) with the onset and course of tics and/or obsessive-compulsive symptoms through the prospective observation of at-risk individuals (ONSET cohort: 260 children aged 3-10 years who are tic-free at study entry and have a first-degree relative with a chronic tic disorder) and affected individuals (COURSE cohort: 715 youth aged 3-16 years with a tic disorder); (2) to characterise the immune response to microbial antigens and the host's immune response regulation in association with onset and exacerbations of tics; (3) to increase knowledge of the human gene pathways influencing the pathogenesis of tic disorders; and (4) to develop prediction models for the risk of onset and exacerbations of tic disorders. The EMTICS study is, to our knowledge, the largest prospective cohort assessment of the contribution of different genetic and environmental factors to the risk of developing tics in putatively predisposed individuals and to the risk of exacerbating tics in young individuals with chronic tic disorders

    Marine Tar Residues: a Review

    Get PDF
    Abstract Marine tar residues originate from natural and anthropogenic oil releases into the ocean environment and are formed after liquid petroleum is transformed by weathering, sedimentation, and other processes. Tar balls, tar mats, and tar patties are common examples of marine tar residues and can range in size from millimeters in diameter (tar balls) to several meters in length and width (tar mats). These residues can remain in the ocean envi-ronment indefinitely, decomposing or becoming buried in the sea floor. However, in many cases, they are transported ashore via currents and waves where they pose a concern to coastal recreation activities, the seafood industry and may have negative effects on wildlife. This review summarizes the current state of knowledge on marine tar residue formation, transport, degradation, and distribution. Methods of detection and removal of marine tar residues and their possible ecological effects are discussed, in addition to topics of marine tar research that warrant further investigation. Emphasis is placed on ben-thic tar residues, with a focus on the remnants of the Deepwater Horizon oil spill in particular, which are still affecting the northern Gulf of Mexico shores years after the leaking submarine well was capped

    Fast-transient searches in real time with ZTFReST: Identification of three optically discovered gamma-ray burst afterglows and new constraints on the kilonova rate

    Get PDF
    The most common way to discover extragalactic fast transients, which fade within a few nights in the optical, is via follow-up of gamma-ray burst and gravitational-wave triggers. However, wide-field surveys have the potential to identify rapidly fading transients independently of such external triggers. The volumetric survey speed of the Zwicky Transient Facility (ZTF) makes it sensitive to objects as faint and fast fading as kilonovae, the optical counterparts to binary neutron star mergers, out to almost 200 Mpc. We introduce an open-source software infrastructure, the ZTF REaltime Search and Triggering, ZTFReST, designed to identify kilonovae and fast transients in ZTF data. Using the ZTF alert stream combined with forced point-spread-function photometry, we have implemented automated candidate ranking based on their photometric evolution and fitting to kilonova models. Automated triggering, with a human in the loop for monitoring, of follow-up systems has also been implemented. In 13 months of science validation, we found several extragalactic fast transients independently of any external trigger, including two supernovae with post-shock cooling emission, two known afterglows with an associated gamma-ray burst (ZTF20abbiixp, ZTF20abwysqy), two known afterglows without any known gamma-ray counterpart (ZTF20aajnksq, ZTF21aaeyldq), and three new fast-declining sources (ZTF20abtxwfx, ZTF20acozryr, ZTF21aagwbjr) that are likely associated with GRB200817A, GRB201103B, and GRB210204A. However, we have not found any objects that appear to be kilonovae. We constrain the rate of GW170817-like kilonovae to R < 900 Gpc-3 yr-1 (95% confidence). A framework such as ZTFReST could become a prime tool for kilonova and fast-transient discovery with the Vera Rubin Observatory
    corecore