778 research outputs found

    Combined Weak Lensing and X-Ray Search for Galaxy Clusters and the Filaments Connecting Them

    Get PDF
    The work presented here has four main parts. (1) A newly developed, almost fully automated data reduction pipeline for optical single- and multi-chip CCD cameras is described. Its image products are compared to those against reduced images produced from an independently developed pipeline. The comparison shows very good agreement between both pipelines. (2) The theory of cosmic structure formation predicts a filamentary large-scale structure of the Universe. These filaments have been observed in large scale redshift surveys for some time. Here we present an attempt to map such a filament between the close pair of massive galaxy clusters A 222/223 using weak gravitational lensing. A mass bridge connecting both clusters is seen in a mass reconstruction making this system only the third known candidate for such a filamentary structure observed with weak lensing. (3) A public imaging survey following-up on deep XMM-Newton exposures was carried out as collaboration between ESO, the XMM-Newton Survey Science Centre, and the University of Bonn. We present the reduced and calibrated data released from this survey in July 2005. (4) A combined X-ray, optical matched filter, and X-ray search for clusters of galaxies is carried out on the XMM-Newton Follow-Up Survey. We develop and test our selection criteria for the weak lensing search using ray-tracing simulations through N-body simulations. With the adopted selection criteria we find 28 significant weak lensing peaks that positionally coincide with either X-ray or optical matched filter selected cluster candidates, or correspond to previously known clusters

    Cutting a Cake Is Not Always a 'Piece of Cake': A Closer Look at the Foundations of Cake-Cutting Through the Lens of Measure Theory

    Full text link
    Cake-cutting is a playful name for the fair division of a heterogeneous, divisible good among agents, a well-studied problem at the intersection of mathematics, economics, and artificial intelligence. The cake-cutting literature is rich and edifying. However, different model assumptions are made in its many papers, in particular regarding the set of allowed pieces of cake that are to be distributed among the agents and regarding the agents' valuation functions by which they measure these pieces. We survey the commonly used definitions in the cake-cutting literature, highlight their strengths and weaknesses, and make some recommendations on what definitions could be most reasonably used when looking through the lens of measure theory

    HOW TO MODEL SERVICE PRODUCTIVITY FOR DATA ENVELOPMENT ANALYSIS? A META-DESIGN APPROACH

    Get PDF
    The rise of the service economy is increasingly reflected in the IS discipline. Since services depend on a co-creation of value between service providers and customers, productivity measurement needs to account for both points of view. Contrasting this evolution, current productivity management concepts often remain limited to the firm instead of focusing on dyadic relationships. Also, software tools frequently constitute expert systems that are focused on solving an optimization problem based on a linear program, but do not guide users in setting up a suitable productivity model in the first place. To account for this need, we conceptualize a software tool support for setting up productivity models for services. Our concept encompasses an extended Data Envelopment Analysis (DEA) approach as its analytical core, but in addition features various tools that help users to collaboratively define a productivity measurement model. Since the suitability of such a model is contingent on the environment in which it is applied, the proposed concept constitutes a meta-design that is intended to be applicable to a class of productivity management problems. As an outlook we present ideas for further research focusing on the implementation and evaluation of IT artefacts compliant with the proposed meta-design

    Vena Cava Thrombus in Patients with Wilms Tumor

    Get PDF
    (1) Background: Vena cava thrombus (VCT) is rare in Wilms tumor (WT) (4–10%). The aim of this study is to identify factors for an outcome to improve treatment for better survival. (2) Methods: 148/3015 patients with WT (aged < 18 years) and VCT, prospectively enrolled over a period of 32 years (1989–2020) by the German Society for Pediatric Oncology and Hematology (SIOP-9/GPOH, SIOP-93-01/GPOH and SIOP-2001/GPOH), are retrospectively analyzed to describe clinical features, response to preoperative chemotherapy (PC) (142 patients) and surgical interventions and to evaluate risk factors for overall survival (OS). (3) Results: 14 VCT regressed completely with PC and another 12 in parts. The thrombus was completely removed in 111 (85.4%), incompletely in 16 (12.3%), and not removed in 3 (2.3%). The type of removal is unknown in four patients. Patients without VCT have a significantly (p < 0.001) better OS (97.8%) than those with VCT (90.1%). OS after complete resection is (89.9%), after incomplete (93.8%) and with no resection (100%). Patients with anaplasia or stage IV without complete remission (CR) after PC had a significantly worse OS compared to the remaining patients with VCT (77.1% vs. 94.4%; p = 0.002). (4) Conclusions: As a result of our study, two risk factors for poor outcomes in WT patients with VCT emerge: diffuse anaplasia and metastatic disease, especially those with non-CR after PC

    Outcomes of haploidentical stem cell transplantation for chronic lymphocytic leukemia: a retrospective study on behalf of the chronic malignancies working party of the EBMT

    Get PDF
    Allogeneic hematopoietic stem cell transplantation (HCT) may result in long-term disease control in high-risk chronic lymphocytic leukemia (CLL). Recently, haploidentical HCT is gaining interest because of better outcomes with post-transplantation cyclophosphamide (PTCY). We analyzed patients with CLL who received an allogeneic HCT with a haploidentical donor and whose data were available in the EBMT registry. In total 117 patients (74% males) were included; 38% received PTCY as GVHD prophylaxis. For the whole study cohort OS at 2 and 5 yrs was 48 and 38%, respectively. PFS at 2 and 5 yrs was 38 and 31%, respectively. Cumulative incidence (CI) of NRM in the whole group at 2 and 5 years were 40 and 44%, respectively. CI of relapse at 2 and 5 yrs were 22 and 26%, respectively. All outcomes were not statistically different in patients who received PTCY compared to other types of GVHD prophylaxis. In conclusion, results of haploidentical HCT in CLL seem almost identical to those with HLA-matched donors. Thereby, haploidentical HCT is an appropriate alternative in high risk CLL patients with a transplant indication but no available HLA-matched donor. Despite the use of PTCY, the CI of relapse seems not higher than observed after HLA-matched HCT

    The Third Gravitational Lensing Accuracy Testing (GREAT3) Challenge Handbook

    Full text link
    The GRavitational lEnsing Accuracy Testing 3 (GREAT3) challenge is the third in a series of image analysis challenges, with a goal of testing and facilitating the development of methods for analyzing astronomical images that will be used to measure weak gravitational lensing. This measurement requires extremely precise estimation of very small galaxy shape distortions, in the presence of far larger intrinsic galaxy shapes and distortions due to the blurring kernel caused by the atmosphere, telescope optics, and instrumental effects. The GREAT3 challenge is posed to the astronomy, machine learning, and statistics communities, and includes tests of three specific effects that are of immediate relevance to upcoming weak lensing surveys, two of which have never been tested in a community challenge before. These effects include realistically complex galaxy models based on high-resolution imaging from space; spatially varying, physically-motivated blurring kernel; and combination of multiple different exposures. To facilitate entry by people new to the field, and for use as a diagnostic tool, the simulation software for the challenge is publicly available, though the exact parameters used for the challenge are blinded. Sample scripts to analyze the challenge data using existing methods will also be provided. See http://great3challenge.info and http://great3.projects.phys.ucl.ac.uk/leaderboard/ for more information.Comment: 30 pages, 13 figures, submitted for publication, with minor edits (v2) to address comments from the anonymous referee. Simulated data are available for download and participants can find more information at http://great3.projects.phys.ucl.ac.uk/leaderboard

    KiDS-450: cosmological constraints from weak-lensing peak statistics – II: Inference from shear peaks using N-body simulations

    Get PDF
    We study the statistics of peaks in a weak-lensing reconstructed mass map of the first 450 deg2 of the Kilo Degree Survey (KiDS-450). The map is computed with aperture masses directly applied to the shear field with an NFW-like compensated filter. We compare the peak statistics in the observations with that of simulations for various cosmologies to constrain the cosmological parameter S8=σ8Ωm/0.3−−−−−−√⁠, which probes the (Ωm, σ8) plane perpendicularly to its main degeneracy. We estimate S8 = 0.750 ± 0.059, using peaks in the signal-to-noise range 0 ≀ S/N ≀ 4, and accounting for various systematics, such as multiplicative shear bias, mean redshift bias, baryon feedback, intrinsic alignment, and shear–position coupling. These constraints are ∌ 25 per cent tighter than the constraints from the high significance peaks alone (3 ≀ S/N ≀ 4) which typically trace single-massive haloes. This demonstrates the gain of information from low-S/N peaks. However, we find that including S/N < 0 peaks does not add further information. Our results are in good agreement with the tomographic shear two-point correlation function measurement in KiDS-450. Combining shear peaks with non-tomographic measurements of the shear two-point correlation functions yields a ∌20 per cent improvement in the uncertainty on S8 compared to the shear two-point correlation functions alone, highlighting the great potential of peaks as a cosmological probe
    • 

    corecore