342 research outputs found

    Recent Developments in Radical Photoinitiator Chemistry

    Get PDF
    Radiation curing is an established technology used in many industrial manufacturing processes. New applications and technical specifications stimulate the continuous development of tailor-made photoinitiators which can efficiently meet specific requirements. A new class of radical photoinitiators, bisacylphosphine oxides (BAPO), give four initiating radicals per photoinitiator molecule and undergo photo-bleaching of the low-energy absorption band. These features make the compounds highly efficient for radiation curing of highly opaque white pigmented systems, thick coatings, or fiber-reinforced formulations

    Light-based 3D printing of functional polydimethylsiloxane- based microfluidic chips

    Get PDF
    The objective of the work is to fabricate and functionalize 3D printed PDMS-based microfluidic chips through digital light processing DLP-3D printing

    Ex vivo drug response heterogeneity reveals personalized therapeutic strategies for patients with multiple myeloma

    Get PDF
    Multiple myeloma (MM) is a plasma cell malignancy defined by complex genetics and extensive patient heterogeneity. Despite a growing arsenal of approved therapies, MM remains incurable and in need of guidelines to identify effective personalized treatments. Here, we survey the ex vivo drug and immunotherapy sensitivities across 101 bone marrow samples from 70 patients with MM using multiplexed immunofluorescence, automated microscopy and deep-learning-based single-cell phenotyping. Combined with sample-matched genetics, proteotyping and cytokine profiling, we map the molecular regulatory network of drug sensitivity, implicating the DNA repair pathway and EYA3 expression in proteasome inhibitor sensitivity and major histocompatibility complex class II expression in the response to elotuzumab. Globally, ex vivo drug sensitivity associated with bone marrow microenvironmental signatures reflecting treatment stage, clonality and inflammation. Furthermore, ex vivo drug sensitivity significantly stratified clinical treatment responses, including to immunotherapy. Taken together, our study provides molecular and actionable insights into diverse treatment strategies for patients with MM

    Synthesis, structural characterization, antimicrobial and cytotoxic effects of aziridine, 2-aminoethylaziridine and azirine complexes of copper(II) and palladium(II).

    Get PDF
    The synthesis, spectroscopic and X-ray structural characterization of copper(II) and palladium(II) complexes with aziridine ligands as 2-dimethylaziridine HNCH2CMe2 (a), the bidentate N-(2-aminoethyl)aziridines C2H4NC2H4NH2 (b) or CH2CMe2NCH2CMe2NH2 (c) as well as the unsaturated azirine NCH2CPh (d) are reported. Cleavage of the cyclometallated Pd(II) dimer [ÎŒ-Cl(C6H4CHMeNMe2-C,N)Pd]2 with ligand a yielded compound [Cl(NHCH2CMe2)(C6H4CHMe2NMe2-C,N)Pd] (1a). The reaction of the aziridine complex trans-[Cl2Pd(HNC2H4)2] with an excess of aziridine in the presence of AgOTf gave the ionic chelate complex trans-[(C2H4NC2H4NH2-N,Nâ€Č)2Pd](OTf)2 (2b) which contains the new ligand b formed by an unexpected insertion and ring opening reaction of two aziridines (“aziridine dimerization”). CuCl2 reacted in pure HNC2H4 or HNCH2CMe2 (b) again by “dimerization” to give the tris-chelated ionic complex [Cu(C2H4NC2H4NH2-N,Nâ€Č)3]Cl2 (3b) or the bis-chelated complex [CuCl(C2H2Me2NC2H2Me2NH2-N,Nâ€Č)2]Cl (4c). By addition of 2H-3-phenylazirine (d) to PdCl2, trans-[Cl2Pd(NCH2CPh)2] (5d) was formed. All new compounds were characterized by NMR, IR and mass spectra and also by X-ray structure analyses (except 3b). Additionally the cytotoxic effects of these complexes were examined on HL-60 and NALM-6 human leukemia cells and melanoma WM-115 cells. The antimicrobial activity was also determined. The growth of Gram-positive bacterial strains (S. aureus, S. epidermidis, E. faecalis) was inhibited by almost all tested complexes at the concentrations of 37.5–300.0 ÎŒg mL−1. However, MIC values of complexes obtained for Gram-negative E. coli and P. aeruginosa, as well as for C. albicans yeast, mostly exceeded 300 ÎŒg mL−1. The highest antibacterial activity was achieved by complexes 1a and 2b. Complex 2b also inhibited the growth of Gram-negative bacteria. Graphical abstract: Synthesis, structural characterization, antimicrobial and cytotoxic effects of aziridine, 2-aminoethylaziridine and azirine complexes of copper(ii) and palladium(ii
    • 

    corecore