1,279 research outputs found

    Unified Description of Aging and Rate Effects in Yield of Glassy Solids

    Full text link
    The competing effects of slow structural relaxations (aging) and deformation at constant strain rate on the shear yield stress Ï„y\tau^y of simple model glasses are examined using molecular simulations. At long times, aging leads to a logarithmic increase in density and Ï„y\tau^y. The yield stress also rises logarithmically with rate, but shows a sharp transition in slope at a rate that decreases with increasing age. We present a simple phenomenological model that includes both intrinsic rate dependence and the change in properties with the total age of the system at yield. As predicted by the model, all data for each temperature collapse onto a universal curve.Comment: 4 pages, 3 figure

    Optimal protocols for Hamiltonian and Schr\"odinger dynamics

    Full text link
    For systems in an externally controllable time-dependent potential, the optimal protocol minimizes the mean work spent in a finite-time transition between given initial and final values of a control parameter. For an initially thermalized ensemble, we consider both Hamiltonian evolution for classical systems and Schr\"odinger evolution for quantum systems. In both cases, we show that for harmonic potentials, the optimal work is given by the adiabatic work even in the limit of short transition times. This result is counter-intuitive because the adiabatic work is substantially smaller than the work for an instantaneous jump. We also perform numerical calculations of the optimal protocol for Hamiltonian dynamics in an anharmonic quartic potential. For a two-level spin system, we give examples where the adiabatic work can be reached in either a finite or an arbitrarily short transition time depending on the allowed parameter space.Comment: submitted to J. Stat. Mech.: Theor. Exp

    The mechanisms of spatial and temporal earthquake clustering

    Full text link
    The number of earthquakes as a function of magnitude decays as a power law. This trend is usually justified using spring-block models, where slips with the appropriate global statistics have been numerically observed. However, prominent spatial and temporal clustering features of earthquakes are not reproduced by this kind of modeling. We show that when a spring-block model is complemented with a mechanism allowing for structural relaxation, realistic earthquake patterns are obtained. The proposed model does not need to include a phenomenological velocity weakening friction law, as traditional spring-block models do, since this behavior is effectively induced by the relaxational mechanism as well. In this way, the model provides also a simple microscopic basis for the widely used phenomenological rate-and-state equations of rock friction.Comment: 7 pages, 10 figures, comments welcom

    Variety of idempotents in nonassociative algebras

    Full text link
    In this paper, we study the variety of all nonassociative (NA) algebras from the idempotent point of view. We are interested, in particular, in the spectral properties of idempotents when algebra is generic, i.e. idempotents are in general position. Our main result states that in this case, there exist at least n−1n-1 nontrivial obstructions (syzygies) on the Peirce spectrum of a generic NA algebra of dimension nn. We also discuss the exceptionality of the eigenvalue λ=12\lambda=\frac12 which appears in the spectrum of idempotents in many classical examples of NA algebras and characterize its extremal properties in metrised algebras.Comment: 27 pages, 1 figure, submitte

    Dynamics of Viscoplastic Deformation in Amorphous Solids

    Full text link
    We propose a dynamical theory of low-temperature shear deformation in amorphous solids. Our analysis is based on molecular-dynamics simulations of a two-dimensional, two-component noncrystalline system. These numerical simulations reveal behavior typical of metallic glasses and other viscoplastic materials, specifically, reversible elastic deformation at small applied stresses, irreversible plastic deformation at larger stresses, a stress threshold above which unbounded plastic flow occurs, and a strong dependence of the state of the system on the history of past deformations. Microscopic observations suggest that a dynamically complete description of the macroscopic state of this deforming body requires specifying, in addition to stress and strain, certain average features of a population of two-state shear transformation zones. Our introduction of these new state variables into the constitutive equations for this system is an extension of earlier models of creep in metallic glasses. In the treatment presented here, we specialize to temperatures far below the glass transition, and postulate that irreversible motions are governed by local entropic fluctuations in the volumes of the transformation zones. In most respects, our theory is in good quantitative agreement with the rich variety of phenomena seen in the simulations.Comment: 16 pages, 9 figure

    Boundary lubrication with a glassy interface

    Full text link
    Recently introduced constitutive equations for the rheology of dense, disordered materials are investigated in the context of stick-slip experiments in boundary lubrication. The model is based on a generalization of the shear transformation zone (STZ) theory, in which plastic deformation is represented by a population of mesoscopic regions which may undergo non affine deformations in response to stress. The generalization we study phenomenologically incorporates the effects of aging and glassy relaxation. Under experimental conditions associated with typical transitions from stick-slip to steady sliding and stop start tests, these effects can be dominant, although the full STZ description is necessary to account for more complex, chaotic transitions

    On the Backbending Mechanism of 48^{48}Cr

    Full text link
    The mechanism of backbending in 48^{48}Cr is investigated in terms of the Projected Shell Model and the Generator Coordinate Method. It is shown that both methods are reasonable shell model truncation schemes. These two quite different quantum mechanical approaches lead to a similar conclusion that the backbending is due to a band crossing involving an excited band which is built on simultaneously broken neutron and proton pairs in the ``intruder'' subshell f7/2f_{7/2}. It is pointed out that this type of band crossing is usually known to cause the second backbending in rare-earth nuclei.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev. Let

    VOLT: a novel open-source pipeline for automatic segmentation of endolymphatic space in inner ear MRI

    Get PDF
    BACKGROUND Objective and volumetric quantification is a necessary step in the assessment and comparison of endolymphatic hydrops (ELH) results. Here, we introduce a novel tool for automatic volumetric segmentation of the endolymphatic space (ELS) for ELH detection in delayed intravenous gadolinium-enhanced magnetic resonance imaging of inner ear (iMRI) data. METHODS The core component is a novel algorithm based on Volumetric Local Thresholding (VOLT). The study included three different data sets: a real-world data set (D1) to develop the novel ELH detection algorithm and two validating data sets, one artificial (D2) and one entirely unseen prospective real-world data set (D3). D1 included 210 inner ears of 105 patients (50 male; mean age 50.4 ± 17.1 years), and D3 included 20 inner ears of 10 patients (5 male; mean age 46.8 ± 14.4 years) with episodic vertigo attacks of different etiology. D1 and D3 did not differ significantly concerning age, gender, the grade of ELH, or data quality. As an artificial data set, D2 provided a known ground truth and consisted of an 8-bit cuboid volume using the same voxel-size and grid as real-world data with different sized cylindrical and cuboid-shaped cutouts (signal) whose grayscale values matched the real-world data set D1 (mean 68.7 ± 7.8; range 48.9-92.8). The evaluation included segmentation accuracy using the Sørensen-Dice overlap coefficient and segmentation precision by comparing the volume of the ELS. RESULTS VOLT resulted in a high level of performance and accuracy in comparison with the respective gold standard. In the case of the artificial data set, VOLT outperformed the gold standard in higher noise levels. Data processing steps are fully automated and run without further user input in less than 60 s. ELS volume measured by automatic segmentation correlated significantly with the clinical grading of the ELS (p < 0.01). CONCLUSION VOLT enables an open-source reproducible, reliable, and automatic volumetric quantification of the inner ears' fluid space using MR volumetric assessment of endolymphatic hydrops. This tool constitutes an important step towards comparable and systematic big data analyses of the ELS in patients with the frequent syndrome of episodic vertigo attacks. A generic version of our three-dimensional thresholding algorithm has been made available to the scientific community via GitHub as an ImageJ-plugin

    Phenotypic indicators to identify methionine rich European grain legumes and the correlation of grain methionine contents with the sulphur supply

    Get PDF
    Home grown legumes are a valuable protein source for pure on-farm diets for livestock in organic farming. Whereas protein of Glycine max naturally has higher contents of methionine nand also lysine typical European grain legumes (Pisum sativum L., Vicia faba L., Lupinus angustifolius L.) used in organic farms as component of animal food are relatively low in those amino acids
    • …
    corecore